

www.A4L.org

Version 3.2, June 2016

SIF Infrastructure Specification 3.2:

Base Architecture

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 1 of 97

1. Introduction ... 4

1.1. Preamble ... 4

1.2. Guiding Principles .. 5

1.3. Disclaimer .. 6

1.4. Certification & Compliance Claims .. 6

1.5. Permission and Copyright... 7

1.6. Infrastructure Artifacts Overview .. 7

1.7. Organization of Document ... 8

1.8. Document Conventions Definitions .. 9

1.8.1. References ... 9

1.8.2. Terminology .. 9

1.8.3. Element Characteristics ... 10

1.9. Assumptions ... 10

1.10. Version Numbers ... 11

1.11. SIF 2.6 Infrastructure Functionality not carried forward ... 12

1.12. New functionality introduced in SIF 3.0 .. 13

1.13. Changes introduced in SIF 3.1 .. 15

1.14. Changes introduced in SIF 3.2 .. 15

2. Infrastructure Overview .. 16

2.1. Glossary of Terms and Concepts ... 16

2.2. Environments .. 27

3. Conventions, Dependencies & Metrics... 28

3.1. XML Name Spaces .. 28

3.2. Normative References (Standards, versions and options) .. 28

3.3. Infrastructure Protocol Layer (HTTPS) .. 29

3.3.1. HTTPS Guidance ... 30

3.3.2. Infrastructure Protocol Layer (SIF HTTPS) .. 31

3.3.3. HTTP Codes ... 31

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 2 of 97

3.4. UUIDs ... 32

3.5. Message-level element snippets and examples.. 32

4. Basic Infrastructure Framework ... 33

4.1. Service Hierarchy .. 33

4.1.1. SIF Environment ... 33

4.1.2. SIF Zone ... 35

4.1.3. SIF Context .. 36

4.2. Message Exchange Patterns (MEPs) .. 37

4.2.1. Request / Response ... 37

4.2.2. Event Publish / Subscribe .. 40

4.2.3. Subscriber Error Handling Logic .. 41

4.3. Message Parameters ... 41

4.3.1. Design Paradigm .. 42

4.3.2. Parameter Details Summary .. 42

4.3.3. URL Matrix Parameters ... 48

4.3.4. Notation Headers ... 49

4.4. Request / Response / Event Message Exchange Choreography................................. 51

Process Table ... 51

4.5. Error Handling .. 55

4.5.1. SIF Error Message ... 56

4.5.2. SIF HTTP Error Codes ... 57

4.6. Success Handling .. 58

5. Service Operations .. 60

5.1. Service Types... 61

5.2. Requests .. 64

5.3. Service Request Identifiers ... 65

5.4. Object-level Query .. 66

5.4.1. Object-level Query Options .. 67

5.4.2. Query Response Pages .. 69

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 3 of 97

5.6. Service Paths ... 73

5.6.1. Service Paths in Query URLs ... 73

5.6.2. Service Paths in the Provider Registry .. 74

5.7. XQuery ... 75

5.7.1. Terminology .. 75

5.7.2. Static XQuery Templates ... 76

5.8. Dynamic Query ... 79

5.9. Result Set Order ... 81

5.10. Query By Example (QBE) ... 82

5.10.1. REST Call .. 83

5.10.2. QBE Payload & Query Functionality .. 83

5.10.3. Provider Registry & ACLs ... 85

5.11. “Changes Since” Functionality .. 85

5.11.1. REST Call (Consumer)... 85

5.11.2. Payload Interpretation .. 87

5.11.3. Provider Registry & ACLs ... 87

5.12. Change Requests and Events Overview ... 88

5.12.1. Multi-object Requests and Responses .. 88

5.12.2. Multi-object Events... 89

5.12.3. Partial Failures .. 89

5.12.4. Message Payloads and Data Objects .. 90

5.13. Create ... 90

5.14. Update.. 92

5.15. Delete ... 94

5.16. Head ... 96

5.17. Functional Services .. 96

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 4 of 97

1. Introduction
SIF 3.0 infrastructure represented a major release of the SIF standard. Currently unused

functionality in SIF 2.x was deprecated or replaced entirely, and significant new, non-backward

compatible functionality has been added.

As with the release of previous major versions of the SIF standard, extremely valuable

feedback regarding confusing or inconsistent statements, specification conflicts with

unexpected developer tool limitations, and important missing functionality was received from

document reviewers, interested developers and early adopters during the first 90 days after

the specification was released to the public. This resulted in follow up efforts to address all

these concerns

The end result is the creation of SIF Infrastructure 3.0.1. This was a “fix release”, correcting

errors inadvertently contained in SIF 3.0 and standardizing additional requested SIF

infrastructure functionality. With the issuance of that version of the documentation we

believe the basic goals of SIF 3.0 were completely met, in a stable, secure and powerful REST-

based infrastructure release that is unlikely to be “broken” in the foreseeable future.

As this solid base gained in popularity attention was paid to ease of use. Particularly meeting

the expectations of programmers leveraging large cloud services. With this 3.1 release access

to data was streamlined, especially for those typical use cases where authentication (and

roles) yields authorization.

The detailed set of changes to the SIF Infrastructure 3.0.1 documentation which are contained

in this SIF Infrastructure 3.1 release are listed in Section 1.13 below.

1.1. Preamble

The Systems Interoperability Framework (SIF) is not a product, but a technical blueprint for

enabling diverse applications to interact and share data related to entities in the pK-20 and

workforce instructional and administrative environment. SIF is designed to:

● Facilitate data sharing and reporting between applications without incurring expensive

customer development costs;

● Enhance product functionality efficiently; and

● Provide best-of-breed solutions to customers easily and seamlessly.

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 5 of 97

The SIF Implementation Specification defines architecture requirements and communication

protocols for software components and the interfaces between them; it makes no assumption

of specific hardware or software products needed to develop SIF-enabled applications and

middleware service implementations, other than their ability to support technologies

leveraged as the foundation for SIF.

1.2. Guiding Principles

The set of guiding principles used during its development determined that the SIF 3

Infrastructure documented here must:

1. Be re-usable without change to support the Data Model of any SIF locale (i.e. be

payload independent).

2. Leverage functionality provided by existing infrastructure standards by making them

normative where possible.

3. Provide a clear transition path for current suppliers and end users of both SIF SOAP

and Classic (HTTPS) infrastructure technology.

4. Lower the barrier to entry for new vendors, thereby helping to increase the number

of SIF infrastructure technology providers.

5. Not drop any existing functionality in the previous release which has been utilized by

significant numbers of SIF adopters, without supplying a viable alternative (because

this new release must still address all underlying use cases).

6. Strengthen overall data security.

7. Support “out of the box” interoperability between SIF conformant applications.

8. Extend the SIF standard into new developer environments such as REST without

fragmenting SIF adopters into separate non-interoperable communities.

If any of those requirements are not met by the SIF 3 Infrastructure Standard, details of the

specific violation should be reported back to the SIF Association (dba Access 4 Learning (A4L)

Community) using the specification feedback instructions contained on the A4L website.

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 6 of 97

1.3. Disclaimer

The information, software, products, and services included in the SIF Implementation

Specification may include inaccuracies or typographical errors. Changes are periodically

added to the information herein. The SIF Association may make improvements and/or

changes in this document at any time without notification. Information contained in this

document should not be relied upon for personal, medical, legal, or financial decisions.

Appropriate professionals should be consulted for advice tailored to specific situations.

THE SIF ASSOCIATION, ITS PARTICIPANT(S), AND THIRD PARTY CONTENT PROVIDERS MAKE NO

REPRESENTATIONS ABOUT THE SUITABILITY, RELIABILITY, TIMELINESS, AND ACCURACY OF

THE INFORMATION, SOFTWARE, PRODUCTS, SERVICES, AND RELATED GRAPHICS CONTAINED

IN THIS DOCUMENT FOR ANY PURPOSE. ALL SUCH INFORMATION, SOFTWARE, PRODUCTS,

SERVICES, AND RELATED GRAPHICS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY

KIND. THE SIF ASSOCIATION AND/OR ITS PARTICIPANT(S) HEREBY DISCLAIM ALL WARRANTIES

AND CONDITIONS WITH REGARD TO THIS INFORMATION, SOFTWARE, PRODUCTS, SERVICES,

AND RELATED GRAPHICS, INCLUDING ALL IMPLIED WARRANTIES AND CONDITIONS OF:

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND NON-INFRINGEMENT.

IN NO EVENT SHALL THE SIF ASSOCIATION, ITS PARTICIPANT(S), OR THIRD PARTY CONTENT

PROVIDERS BE LIABLE FOR ANY DIRECT, INDIRECT, PUNITIVE, INCIDENTAL, SPECIAL,

CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER INCLUDING, WITHOUT

LIMITATION, DAMAGES FOR LOSS OF USE, DATA, OR PROFITS, ARISING OUT OF OR IN ANY

WAY CONNECTED WITH THE USE OR PERFORMANCE OF THIS DOCUMENT, WITH THE DELAY

OR INABILITY TO USE THE DOCUMENT, THE PROVISION OF OR FAILURE TO PROVIDE SERVICES,

OR FOR ANY INFORMATION, SOFTWARE, PRODUCTS, SERVICES AND RELATED GRAPHICS

OBTAINED THROUGH THIS DOCUMENT OR OTHERWISE ARISING OUT OF THE USE OF THIS

DOCUMENT, WHETHER BASED ON CONTRACT, TORT, STRICT LIABILITY, OR OTHERWISE, EVEN

IF THE SIF ASSOCIATION, ITS PARTICIPANT(S), OR THIRD PARTY CONTENT PROVIDERS HAVE

BEEN ADVISED OF THE POSSIBILITY OF DAMAGES. IF YOU ARE DISSATISFIED WITH ANY

PORTION OF THIS DOCUMENT OR WITH ANY OF THESE TERMS OF USE, YOUR SOLE AND

EXCLUSIVE REMEDY IS TO DISCONTINUE USING THIS DOCUMENT.

1.4. Certification & Compliance Claims

Though a product may be demonstrated to comply with this specification, no product may be

designated as SIF Certified™ by an organization or individual until the product has been tested

against and passed established compliance criteria, published separately. Organizations and

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 7 of 97

individuals that are currently paying annual membership dues to the SIF Association and

dedicating resources to the initiative may also use the designation SIF Participant to describe

their involvement with the SIF Association and SIF in marketing, public relations and other

materials.

1.5. Permission and Copyright

Copyright © SIF Association. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative

works that comment on or otherwise explain it or assist in its implementation may be

prepared, copied, published and distributed, in whole or in part, without restriction of any

kind, provided that the above copyright notice and this paragraph are included on all such

copies and derivative works. However, this document itself may not be modified in any way,

such as by removing the copyright notice or references to the SIF Association, or its

committees, except as needed for the purpose of developing SIF standards using procedures

approved by the SIF Association, or as required to translate it into languages other than

English. The limited permissions granted above are perpetual and will not be revoked by the

SIF Association or its successors or assigns.

1.6. Infrastructure Artifacts Overview

The new SIF 3.0 infrastructure is delivered via the following set of release artifacts.

Infrastructure

Volume

Description Primary Audience

Read This First The overview, introduction and guide to the

other SIF 3 Infrastructure artifacts.

Anyone interested in

understanding the

functionality of the SIF 3

Infrastructure

Base

Architecture

Defines the “core” concepts and detailed

service operation framework of the SIF 3

infrastructure, and is the base document on

which all the other infrastructure volumes

Those interested in

learning about the SIF 3

Infrastructure at a

conceptual level.

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 8 of 97

identified below depend. This is the volume

you are reading now.

Infrastructure

Services

Defines the complete specification (data

structures, operations, and actions) for the set

of directly accessible infrastructure services

that together comprise the SIF 3

Environments Provider Interface (comparable

to the SIF 2.x ZIS interface). It details which

operations must be supported and which are

optional for both the Direct and Brokered

Architectures.

Those interested in

learning about the SIF 3

Infrastructure at a detailed

level.

Utilities Defines the additional set of Services

providing secondary infrastructure

functionality, which are accessed identically to

Object and Functional Services.

When added to the Infrastructure Services,

the combination provides the complete

description of the SIF 3 infrastructure.

A reference work for

developers utilizing the full

functionality of the SIF 3

infrastructure

Functional

Services

Defines the additional infrastructure pieces

needed to manage jobs and route messages

in-order-to support multiphase services with a

beginning, middle, and end.

Those interested in

defining interaction with

more than one step or

supporting a predefined

functional service.

1.7. Organization of Document

This volume, the SIF Infrastructure Specification 3.2: Base Architecture, will be of interest to

technical readers, including software architects, developers and integrators. It defines the

“logical core” of the SIF Infrastructure, which is utilized in defining both the Infrastructure and

Utilities Services.

The documentation it contains is organized as follows:

● The Introduction includes material common to most SIF specification volumes:

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 9 of 97

○ The SIF Association disclaimer

○ Details regarding certification, compliance and copyright claims

○ Document conventions and organization

○ Guidelines under which the technology described in the document was

developed,

○ Overview of the major functionality enhancements provided with this release.

● The Glossary provides the vocabulary that will be used in this and all other SIF 3

infrastructure documents.

● Normative References to existing standards, XML Namespace usage and HTTP and

other conventions used in this document are identified.

● Basic Infrastructure Concepts provide a component-by-component review of the SIF 3

infrastructure, and the framework for writing Application (object and functional)

services from the viewpoint of both Service Consumers and Providers.

● The SIF 3 Environment details the message framework which underlays both Direct and

Brokered Architectures. This includes documentation of the SIF Message Exchange

Patterns, and the error handling and data security requirements, which must be

supported.

● The Service Operation Framework (the bulk of this document) describes the operations

comprising the complete Consumer and Provider interface (data structures, operations

and actions) in both a Direct and Brokered Architecture.

1.8. Document Conventions Definitions

The first time a term or concept is defined, it may be emphasized.

1.8.1. References

References to other works occurring in this text are given in brackets, e.g. [REFERENCE].

1.8.2. Terminology

The key words must, must not, required, shall, shall not, should, should not,

recommended, and may, when indicated in lower case bold, must be interpreted as

described in [RFC 2119].

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 10 of 97

1.8.3. Element Characteristics

The possible values of the “Char” column shown in the Element Definition Tables used

throughout this and other documents include one of the following primary (and

mutually exclusive) element characteristics:

 M – Mandatory. The element must appear in every Create Event and, where not

specifically excluded in a conditional Request, in every Response message issued

by the Service Provide as well. If a Create Request does not specify one or more

Mandatory elements, the request is erroneous.

 Q – ReQuired. If the element appears in the original Create Event or is eventually

included in an Update Event (i.e. once it is known to the Service Provider), it must

be returned in all corresponding queries as if it were Mandatory.

 O – Optional. The element may or may not appear in any message relating to the

object. The Provider need not support it.

One or more of the following qualifiers may also appear with the above

characteristics:

 C – Conditional. The element is treated as the accompanying primary

characteristic only if the specified conditions are satisfied. Otherwise the element

is omitted from the message. Specifically:

o MC – If conditions are such that the element can legally be included, it must

be

o OC – If conditions are such that the element can legally be included, it may

be.

 I – Immutable. The value of the element cannot be changed once it is supplied.

 U – Unique. The value of this element for each object of this type must be unique

(ex: ID)

 N – Non-Queryable. The element value is often calculated (ex: an aggregate), and

cannot be used as a search key in a conditional Query Request.

 R – Repeatable. The element may appear more than once.

1.9. Assumptions

This is the base architecture document for the SIF 3 infrastructure. It is independent of both

Data Model and transport layer technology. As such, the following assumptions are made of

readers of this specification.

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 11 of 97

They have an understanding of, or prior working experience with, one or more of the

following:

● XML, XML schema, and the role and use of XML namespaces

● HTTP and HTTPS and the security, encryption and authentication features of the latter.

● Service Oriented Architecture (SOA) and such concepts as interface, implementation,

adapter and message queue.

● Common middleware components including the Service Registry and the Enterprise

Service Bus (ESB), as well as the associated functionality they provide.

1.10. Version Numbers

The SIF infrastructure is completely independent of the Data Model (SIF or otherwise) which

defines the payload of the data it will carry in specific deployments. As a result, when the

term “version numbers” is used below, the conventions discussed apply only to the

Infrastructure version.

The SIF Infrastructure uses the following version numbering scheme:

major version.minor version.revision number

Major new versions typically introduce additions/changes that impact a significant percentage

of SIF-enabled applications (e.g. making previously optional elements mandatory, removal of

deprecated objects, elements or values). The first release of a major version has a minor

version of 0 (ex: 3.0); major version numbers start at 1 and are incremented as major versions

are released (1.0, 2.0, 3.0 ...).

Minor infrastructure releases typically may include minor infrastructure extensions/changes

that do not impact existing SIF-enabled applications, whether applications or middleware. The

first minor version released subsequent to and within a major release has a minor version of

1 and is incremented as new minor versions are released (3.1, 3.2, ...). If a significant number

of minor release features is introduced in a specification, the SIF Association may decide to

increment the minor version number by more than 1 (e.g. 3.1 to 3.5), though a number like 3.5

is not an indication of being halfway to a major release, as minor version numbers may be

incremented significantly past 10 (3.10, 3.11, ...) as minor version features are released.

Corrections resulting from identified errata, as well as textual changes, may be incorporated

into a revision release. These typically include minor corrections to messages or data objects,

corrections of typographical errors, or corrected/expanded documentation. If major errors in

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 12 of 97

any release are identified, a revision release may incorporate changes more typical of a major

or minor release. First major and minor releases have a revision number of 0, which is

omitted from the version number (3.0, not 3.0.0); subsequent revision release numbers start

at 1 and are incremented as new revisions are released (3.0.1, 3.0.2, ...).

This document pertains to the SIF 3.1 Infrastructure release.

1.11. SIF 2.6 Infrastructure Functionality not carried forward

SIF 3 provides an extensive set of new infrastructure functionality when compared to its

immediate SIF 2.6 predecessor. However several pre-existing features have been EOL’d and

replaced with alternatives that address the underlying use cases.

The list of functionality not carried forward in its earlier form, includes:

● Selective Message Blocking capability (used to block delivery of Events so Responses to

issued Requests, could be received immediately) is gone, superseded by the ability to

declare, assign and utilize multiple input message queues.

● The ability of a non-Object Provider to publish an Add, Update or Delete Object Event is

gone, superseded by the ability to send a request for the equivalent change operation

directly to the Object Service Provider. In SIF 3, only the Service Provider can post

Events, and it must do that whenever there is a change to the underlying data it

supports (whether or not this change was the result of a previous request). As a result,

other applications can now “synchronize” themselves to a Data Provider by processing

each arriving Event.

● The “Bundled Events” capability introduced in SIF 2.6 has been superseded with a more

general “multiple-object” create, update and delete operations and events defined for

all Object Services.

● The Response Message Packet functionality has been superseded by the more general

“Paged Query Response” functionality, which supports both interactive and Batch mode

Query Requests.

● The SIF-specific Extended Query syntax has been superseded by standard XQuery

notation, which may be handled like a named query.

● Directed Read requests routed to a client-specified secondary Object Provider have

been superseded with normal Query requests targeted at an Object Service of the

specified type, with a “secondary” context.

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 13 of 97

● The “classic” SIF transport has been replaced with support for the REST transport and

design patterns, which now form the basic underlying layer of the SIF 3 infrastructure.

1.12. New functionality introduced in SIF 3.0

SIF 3.0 represented a major release of the SIF Infrastructure, and as such it introduced a wide

range of new functionality. Of particular note are three groundbreaking design advances that

satisfy long standing requests from SIF 2.x developers and implementers. They are

summarized below.

1. The infrastructure is based on REST technology and design patterns.

REST is the underlying technology used to provide the foundation for exchanging SIF-

compliant data. The specific changes made include:

● The SIF 3.0 infrastructure Service Architecture has been aligned with the

Get/Post/Put/Delete standard REST operations to make them more easily map-

able to a set of standard REST resources.

● The new “immediate return” option for Request / Response exchanges conforms

to common REST usage.

● An “interactive query” option which supports a set of incremental page reads has

been introduced which closely maps to a common REST design pattern.

● The SIF REST Developer Sandbox (SIF-RS) utilizes and illustrates the agreed on set

of REST Developer-specific mapping specifications (including URL query

parameters and HTTP Header arguments) that will guarantee REST applications

can smoothly interoperate in a SIF 3 Environment.

2. The infrastructure does not mandate the deployment of middleware

components

In addition to the Brokered (3-party) Environment SIF architecture which had previously

defined all SIF 2.x deployments, there is now a new Direct (2-party) option in which a

Client Application “consuming” a SIF Service can connect directly with the “provider” of

that Service. There is no longer a requirement to interpose generic message broker

middleware such as the Zone Integration Server (ZIS) between them.

Essentially a relatively thin Environments Provider Interface wrapper is placed around

an Object Service, to allow such a Direct Architecture to be provided by an SIS or LMS

system.

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 14 of 97

This wrapper (the “Direct Architecture Interface”) is a subset of the “Brokered Architecture

Interface” which provides access to a broader set of middleware services. As a result,

every SIF 3 client application which was written to function in a Direct Architecture

will also function in a Brokered Architecture

There are several use cases for a Direct Architectures that are of particular interest:

 When an application wants to make its SIF-compliant data accessible to multiple

users running simple RESTful client applications on mobile devices (much as the

application might already be available to users via a browser). In such cases

where only simple Request/ Response sequences are needed (i.e. no Events or

asynchronous IO) the “Lite” form of the Direct Architecture Interface may be

supported, which is very little more than is provided to a client of any RESTful

Service.

 When an application only utilizes data from one other application. An example is

a Student Contact application needing to access / update Student Name and

Addresses and Phone Numbers from an SIS system. If the SIS system provides a

Direct Architecture interface, this enables the Student Contact system to access

its SIF-compliant data directly without the need to install middleware.

All applications (client or service) in the above examples can be SIF Certified, and there

is every expectation that each will interoperate “out of the box” with its opposite

number.

3. The infrastructure is independent of the Data Model defining the payloads it

carries

In a major advance from SIF 2.x, the SIF 3.0 infrastructure can be utilized without

change to carry payloads conforming to locale-specific SIF releases in the AU, UK and

US. The SIF 3.0 Infrastructure version is decoupled from the SIF Data Model version

and this allows SIF-conformant infrastructure products to be sold globally “out of the

box”.1

4. Other important advances provided by this release

These advances include:

1 The fact that the SIF 3.0 infrastructure is payload-independent enables it to securely and efficiently support exchanges

of any data whether the format of that data is defined in the SIF specification or not.

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 15 of 97

● Supports “Service Paths” that provide data for common uses cases

● Support for Named XQuerys and dynamic Where XPath driven query expressions

● Increased performance scalability, especially during periods of high message

traffic

● Extensive new organizational support for centralized Service Management and

Administration

1.13. Changes introduced in SIF 3.1

The major differences between SIF Infrastructure 3.1 and SIF Infrastructure 3.0.1 are

summarized below.

 Simpler authentication through stronger SSO accommodation (including OAuth)

 Simpler consumers through seamless Environment creation (pre-configuration)

 Simpler apps through JSON support (Gossner Notation)

 Simpler messages though fewer HTTP Headers (defaults & query parameters)

 Simpler Environment Providers through optional utilities (alerts is now optional)

 Simpler navigation through ordered results sets (order query parameters)

1.14. Changes introduced in SIF 3.2

The major differences between SIF Infrastructure 3.2 and SIF Infrastructure 3.1 are

summarized below.

 Addition of “Query By Example” (See 5.9 for details)

 Addition of “Changes Since” Functionality (See 5.10 for details).

 Mime Types Support Generalized.

 Addition of HEAD functionality for Request Connector (See 5.15 for details).

 Named XQuerys Parameters are now enumerated outside the Script (See Utility

Services 6 for details)

 Functional Services now have their own connector and job object definition (See

Infrastructure Services, section 11 and the new Functional Services document)

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 16 of 97

2. Infrastructure Overview
This section provides an overview of the SIF 3 Infrastructure. It is intended to serve as both an

initial tutorial and later reference for infrastructure knowledgeable developers and architects,

whether or not they are familiar with the infrastructure supporting SIF 2.x

2.1. Glossary of Terms and Concepts

The following infrastructure terminology will be used during the remainder of this document,

and all other documents describing the SIF 3 infrastructure. The individual terms are defined

in the table below and will be referred to, repeated and expanded upon in subsequent

sections of this and other Infrastructure documents.

Term Meaning

Basic

Terminology

The terms used in the definitions of other terms

Data Object

Type

A collection of elements that has some coherent meaning, which is collected under

a single complex element, given a unique name and treated as a single data entity.

Similar to a “Class” in an object oriented programming language. A Data Object

Type is defined by its corresponding XML Schema.

Data Object An “instantiation” or instance of a Data Object Type. A Data Object is created as a

tree structure and can be validated against the XML schema of the Data Type which

it represents.

ID The unique and immutable identifier of a specific Data Object

Service A set of defined functionality encapsulated behind a standardized CRUD2 interface.

Services are broadly categorized into Infrastructure, Utility, Functional, and Object.

2 “Create, Read, Update and Delete”, corresponding to the REST POST, GET, PUT and DELETE operations.

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 17 of 97

Infrastructure

Components

The set of Infrastructure Building Blocks

Service

Consumer

A Service Consumer implementation makes requests of, and subscribes to and

receives Events from, one or more Service Provider components.

Ex: A Teaching & Learning cloud application, supporting a course, requesting

enrolled students.

SIF 2.x Equivalent: Subscriber Agent

Service

Provider

A Service Provider implementation accepts, processes and responds to requests

from Consumers for object type or function-specific services, and publishes related

Events in accordance with the type of Service Provider Interface it is implementing.

Every independent Service Provider initially registers as a Service Consumer, and

may be (and generally is) a Consumer of one or more other Services.

SIF 2.x Equivalent: Object Provider

Environments

Provider

 An Environments Provider reliably and securely connects the Service Consumers to

the Service Providers by implementing a set of Infrastructure Services which taken

together, comprise the Environments Provider interface.

The implementer of the Environments Provider Interface may optionally (and

transparently) implement one or more Services Provider Interfaces as well. In the

case of a Direct Architecture, this is exactly what it must do.

SIF 2.x Equivalent for a Brokered Architectures Provider: ZIS

There is no SIF 2.x Equivalent for a Direct Architectures Provider

SIF Adapter There are two basic varieties of Adapter, each corresponding to an earlier SIF 2.x

equivalent:

SIF 2x. Component SIF 3.0 Adapter equivalent

Subscriber Agent Service Consumer Adapter (or in simple cases, a

straightforward RESTful Client)

Object Provider Agent Service Provider Adapter (Brokered Architectures

only)

Essentially each Service Consumer and Service Provider application may include a

separate adapter component to communicate with other applications via the

Environments Provider interface. For example, a SIF 3 Brokered Architecture may

integrate a student information application, a learning management application,

and a library automation application. An adapter component acts as a bridge

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 18 of 97

between each application and the Environments Provider interface.

Adapters never communicate with other adapters directly. Instead, each adapter

uses the Environments Provider interface as a trusted intermediary that brokers the

exchange of data with other adapters.

Environment The “SIF 3 Environment” is made available to a Service Consumer when it initially

registers. It comprises the totality of every service the Consumer might possibly

provision itself to access. Based upon authentication constraints however, the

Consumer’s access to some services it can see might be restricted.

The Environment is defined by the set of Infrastructure Service URLs returned to a

Service Consumer in response to a successful Registration Request or referenced by

URI when making a data request where preregistered or automatically registered or

dynamically created. These URLs allow the Environments Provider to provide a

“customized” environment for each Consumer. For example, depending on the

authentication provided by the Consumer at registration time, the URLs returned

might insert it into either a production or test environment, or one that provides

access to only a limited subset of authorized available Service Providers.

As noted, the physical topology behind the Consumer’s Environment interface can

take one of two forms, each of which is described below.

Defined

Architectures

Implementation Topologies or Environment Types

Direct A Direct Architecture connects a single Consumer to a fixed set of one or more

directly accessible Service Providers. These include, at a minimum, the mandatory

set of Infrastructure Services, all mandatory Utility Services and at least one Data

Object or Functional Service.3

A Direct Architecture conceptually does not leverage middleware. All Consumer to

Provider connections are direct (no intermediary), because the Environments

Provider Interface and all Service Provider Interfaces are implemented by an

Environments Provider Adapter front-ending a single application (such as an SIS or

LMS). This means that a Service Consumer cannot dynamically provision itself as a

Service Provider when registered in a Direct Architecture.

Such an Adapter implementation could simultaneously provide a separate

3 All these service types are defined elsewhere in this glossary.

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 19 of 97

Environment to each of several Service Consumers, to enable them to directly

access and update the data of its provided application. In that common case:

 Each Service Consumer is operating in a Environment of its own, and has no

knowledge of any other Consumers

 When any Service Consumer request causes a change to the data in the

Service application, every appropriately subscribed Service Consumer in

every Environment supported by the Environments Provider Adapter

receives the identical corresponding Event.

Details:

Introduced in SIF 3, a Direct Architecture standardizes SIF-compliant message

exchanges between Consumer and Provider in the absence of a central Message

Broker

As described earlier, the typical Service Consumer registered in a SIS-provided

Environment could be a simple data entry application running on a mobile device,

or a Student Contact system that only needed to access the Student’s ID, Name,

Addresses and Phone Numbers.

Brokered The Brokered Architecture securely and reliably connects N Service Consumers to a

dynamically changing list of M Service Providers through a centrally secure,

separate and discrete Message Broker.

Unlike the Direct Architecture, any Service Consumer with the proper authorization

rights can provision itself as a Service Provider, and receive Requests from and

publish Events to, other Service Consumers with the appropriate authorization

rights.

Details: All of the functionality provided by the SIF 2.x Zone has been maintained in

the SIF 3 Brokered Architecture, and in many cases has been extended. The

formerly monolithic SIF 2.x ZIS operations have also been “repackaged” into more

modular SIF 3 Infrastructure Service interfaces.

The “Message Broker” functionality requirements of a SIF 3 Brokered Architecture

can be implemented (among other alternatives) by SIF “business logic” layered on

top of an Enterprise Service Bus (ESB), by internally coupled middleware

components or by an upgraded SIF 2.x Zone Integration Server (ZIS).

The Brokered Architecture offers a superset (rather than replaces) the functionality

of the Direct Architecture. As a result, any Consumer interoperating successfully in

a Direct Architecture can be redeployed into a Brokered Architecture without

reprogramming.

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 20 of 97

Service

Provider Types

Encapsulations of Data and Process

Object While the SIF 3 infrastructure is independent of the Data Model defining the

payloads it carries, all Service Providers must support the following general Object

Service framework.

An Object Service is the “authoritative source” for all data elements contained in all

data objects of a specific type, and services some or all of the following requests:

● Query

● Create

● Update

● Delete

Depending upon the object type, the corresponding Data Object Service may:

 Publish an Event whenever an object is Created

 Publish an Event whenever an object is Deleted

 Publish an Event whenever certain (or any) elements in an Object are

updated

 Restrict the range of possible Queries

Whenever an Object Service receives a Request for an operation it does not

support, it must return an error.

Functional A Functional Service encapsulates stateful process behavior as well as the data

exchanged between applications implementing that process.

It does this by supporting all four methods of a Data Object Service Provider

interface, but applies them to a Jobs Phases rather than Data Objects.

When a Consumer issues a “create” Request to a Functional Service, it results in the

creation of a new executing instance of the Service (a “Job”) rather than a new

instance of a data object.

From a conceptual point of view, each Job instance contains a set of named

“phases”, identical to every other Job created by that Function Service. These

discrete phases define and encapsulate the sub actions, which need to be done, but

they do not explicitly determine the ordering (since the phases defining a Function

may be executed in different order, depending upon the implementation and the

needs of the site where the Functional Service is deployed).

Once created, the Job instance can be queried to find out where in the process it is

(what is happening, what is the current status of each completed phase) and the Job

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 21 of 97

may issue Events.

Each Job Phase is represented by:

 A Phase name

 A status (NotStarted, InProgress, Completed, Failed)

 A defined Object Service corresponding to that Phase (which supports some

or all of the set of service operations)

The creator of the Job can therefore:

 Monitor the status of the Job (through querying the Job instance or by

receiving Job level Events)

 Interact with the Job at any phase by issuing Query, Create, or Delete

requests.

 Impact the Job indirectly through its defined Phases.

 Receive Events from the Job

Example: StudentLocator, EndOfYearRollover4

Object Service

Subtypes

Sub classifications of Object Services

Infrastructure

Service

The following Infrastructure Services5 when taken together define the Environments

Provider Interface.

 Environments (defines and controls the level of Consumer contact with all

other Services)

 Provision Requests (used to request authorization to invoke additional

Service methods)

 Connectors (accepts all Requests, Responses and Events and routes them to

their intended destination(s))

 Queues (collects incoming asynchronous Responses and Events, and

guarantees their delivery, in FIFO order)

 Subscriptions (Created to allow a Consumer to subscribe to Events from a

specified Service Provider, which will be deposited into a specified Queue).

4 Explicit and more detailed examples of such Functional services will be provided at a later date.

5 For further details on individual Infrastructure Services, please refer to the Infrastructure Services document

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 22 of 97

Separate infrastructure components may implement one or more of these Service

Interfaces or they may be implemented by a single unified Environments Provider

Adapter or Broker (the SIF 3 equivalent of the SIF 2.x ZIS). Unlike both the Utility and

Application Services, which use the Connector URL for all Requests, each

Infrastructure Service has an Environment-provided URL, which Consumers must

use to invoke its operations directly.

Utility Service Each of the following Utility Services6 in SIF 3 conforms to the Data Object Service

Interface, where the service being supported relates to the infrastructure and is

independent of any locale-specific Data Model.

 Alerts (Problem and exception reporting)

 Zones (Registry of potentially reachable Zones)

 Providers (Registry of available Service Providers)

 XQuery Templates (Registry of “safe” XQuery scripts)

 External Code Lists (Provider of codes from normative external standards)

 Namespaces (XML Namespace Registry)

Some Utility Services may be mandatory in both Direct and Brokered Architectures,

others may be mandatory only in Brokered Architectures and some may be optional

everywhere.

Application

Service

Every Application Service supports either the Object, or Functional Service Provider

Interface, typically by utilizing a Provider Service Adapter.

Their specific payloads and actions are defined in the Data Model documentation

associated with each locale-specific SIF data model release and any profile

documents.

In a Direct Architecture, Application Services are “pre-registered” and are

components closely coupled to (or a direct part of) the implementation of the

Environments Provider Interface. It is not possible for a Service Consumer to

successfully provision itself as a Service Provider in such an Architecture.

In a Brokered Architecture, Application Services are separate and distinct

components which must first register and provision themselves as Consumers

before they are allowed to provision themselves as Service Providers. The

associated logic to implement the Service Provider Interface is typically contained in

6 For further details on individual Utility Services, please refer to the Utility Services specification

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 23 of 97

a Service Provider Adapter, which may or may not be tightly coupled to the

underlying Application, which is the “owner” of the data or function.

Service

Scoping

The “destination” elements in each Service Request that allow,

“content based routing” to determine the Service Provider that

ultimately receive it.

Environment As indicated above, the Environment provides the totality of all Services that a

Consumer can interact with, and includes the operational access rights that will

govern those interactions. It can contain two or more Zones (one dedicated to

Utility Services, and at least one dedicated to Application Services)

Zone A Zone (similar to its meaning in SIF 2.x) is basically a collection of Application

Services within the Consumer’s Environment, pre-organized by the site

Administrator to correspond to discrete components within the owning educational

organization (such as a school or district) or similar criteria (ex: Special Ed students).

Each Service “instance” accessible within the Consumer’s Environment is scoped to a

Zone, although a given Service Provider implementation may support the same

Service Provider interface in several Zones.

Unlike an Object or Functional Service, every Utility Service is applicable to all SIF 3

Zones in an Environment, and wherever present, is accessible by any properly

authorized Service Consumer. This is achieved by assigning all Utility Services to a

preset unique Zone (infrastructure-utilities) and giving the Consumer access rights to

the appropriate operations of each of these Services.

Each Service Consumer is assigned a “default” Zone at Registration time, which is

used whenever a specific Zone is not otherwise included in one of its Application

Service Requests. If any Consumer Request does not have a matching Service

Provider registered within the specified Zone, it must fail.

The Zones Utility Service provides a Registry of all available Zones within the

Consumer’s Environment.

Context A Context is optional Data Model-specific metadata that may accompany a

Consumer Request as a way of further scoping and restricting the possible Provider.

For example a supplied Context might indicate that the Student Schedule Provider

Service being requested in Zone XYZ is the one dealing with next term’s data, rather

than the current one.

A Context consists of a unique (for a given type of Service in a given Zone) name,

which is used by the Consumer when a request on that service is invoked. It also

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 24 of 97

has an associated description and a set of parameter names and values, which may

be defined by the Data Model the Service Provider conforms to, and is contained in

the entry for that service in the Provider Registry.

Contexts are not global ... they apply only to a specific Service Provider instance

assigned to a single Zone. A Zone can contain multiple Object Provider Services,

each offering its data in a differently named context.

Uniqueness

Taken together, the Zone, Service Type and Context combine to identify a unique

Service Provider instance (included in the Service Provider Registry) which the

Consumer can make requests of. There can be only one Service of a given type with

a given Context in any one Zone. Since the data model namespace is part of an

Environment, messages bound to a service in different namespace must carry a

different applicationKey.

The Consumer can include at most a single Context in any given request7. If there is

no matching Service Provider that supports the specified Context for the specified

Service Provider type in the specified (or default) Zone, the Request must fail.

The default Context is DEFAULT, and that is unique as well. If a Service Instance has

no Context defined, requests to that Service instance must either not include a

Context Name element or have that URL matrix parameter set to DEFAULT. The

Zone and Service type (and the lack of a Context) provide all the information needed

to determine the destination for that request.

Message

Types

Request / Response and Publish / Subscribe

Request Issued by a Service Consumer via the Connector Infrastructure Service, the Request

invokes the corresponding operation on the selected Service Provider. This

Provider must match the specified Service type, the Context name (if any) and

either the explicit or defaulted Zone name the Consumer supplied. If no Service

Provider qualifies, the Connector cannot deliver the Request, and an error will be

returned to the Consumer.

Create, Update and Delete requests may span multiple objects and on success will

7 Note that the Context is represented by contextId which is defined as an xs:token. An individual Data Model release

might impose a Context hierarchy or other Context relationship within this token which could effectively bypass this

“one Context per Request” restriction.

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 25 of 97

result in a corresponding Event being issued by the Service Provider as a result of

the changes they cause.

Event Issued by a Service Provider via the Event Connector Infrastructure Service, either in

response to a specific Consumer change request, and / or if the internal data in one

or more of the Objects it is providing has changed.

The Event type can be either Create, Update or Delete, and the Event message can

report data changes of that type for one or more objects. Event messages are

received by all Service Consumers who earlier successfully provisioned themselves

as subscribers to data changes in that Object type, and represent an efficient way

for Consumers to stay synchronized with the contents of the data maintained by a

Service Provider.

Response Issued by a Service Provider as an HTTP response, to a specific Consumer Request

delivered earlier as an HTTP request.

A Response to a multi-object Create, Update or Delete Request will convey (on

success) a list of matching success / failure indicators. In the case of Create, the IDs

of any newly created objects will also be returned.

A Service Provider does not know whether the Response Mode selected by the

Consumer (see below) was Immediate or Delayed.

Response

Mode

Synchronous or Asynchronous

Immediate The Response to a Request is provided synchronously in the immediate HTTP

response, and the Requester thread for that connection “blocks” until the Response

arrives.

This was added in SIF 3. It matches the standard RESTful Client design pattern and

must be supported in both Direct and Brokered Architectures.

Delayed The Consumer issues the Request which is replied to with an “Accept” status code in

the immediate HTTP response, which indicates “Request is legal and can and will be

delivered to the indicated Service Provider”. This frees a single-threaded Consumer to

do other things.

The Response issued by the Service Provider arrives asynchronously at a later time,

in a manner identical with that of an incoming Event. It contains the Message ID of

the original Request it completes.

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 26 of 97

Query Request

Options

A variety of ways for a Consumer to request data

By ID Only a single object is requested. The specific object desired is indicated by its id. If

successful, every supported element in that object is returned. By ID requests can

only be issued in Immediate mode.

Paged

Interactive

A “Paged” Query is typically one in a series of Service Consumer queries for object

data. Each such Query is idempotent … it contains both a “starting page number”

and “page size” element“. Together they define the start and end of the particular

Page of results from the Query.

It is common, but not required that each interactive Query issued by the Service

Consumer will have the starting page number set one higher than the previous one.

The response to each Interactive Query is immediate. The Service Consumer may

stop issuing Interactive Queries at any time.

Example: A teacher holding a tablet device runs a simple Service Consumer REST

application that interactively queries the Assessment System for the first 30 Student

scores, which are returned immediately.

After they are displayed, the teacher may hit “next” whereupon a new interactive

Query will be issued, and the next 30 Student scores will be immediately returned

and displayed.

Service Paths This is an alternative to Service Name, and where defined and available its use can

greatly enhance the speed at which the Consumer obtains the desired result. For

example to obtain all the Sections in which Student 1234 is currently enrolled, the

single Query Request URL to do that would contain the string:

../students/1234/sections

Paged Batch A “batch” Query posted by the Service Consumer, indicates that the requested data

from all objects satisfying the Query parameters is to be returned by the Service

Provider as a series of delayed (asynchronous) Response messages, where each

Response consists of a Page containing a defined number of Data Objects. The

maximum number of objects per page is the lesser of any limits the Consumer

might have requested or the Provider might have imposed.

Example: A Student Contact System at installation time uses a single Batch Query to

synchronize itself to the entire collection of Student names and phone numbers

held by the Student Information System.

In this case a single Batch Paged Query request will result in multiple paged

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 27 of 97

asynchronous Query Response messages appearing in the selected Consumer

Queue.

Named XQuery A more complex query in which conditions are set on the selection of objects to be

returned and / or only a subset of elements is specifically requested in the

response. This is done by including the token of a pre-registered Named XQuery in

the Request, optionally (depending on the XQuery) accompanying it with parameter

values used when the script is retrieved and executed at the Service Provider.

Named XQuery requests can be issued in both Delayed and Immediate Modes.

XQuery is used to unambiguously communicate the behavior of the query and may

have nothing to do with how the Service Provider executes the named query

indicated.

2.2. Environments

There are two types of Environments a Consumer may register with.

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 28 of 97

3. Conventions, Dependencies & Metrics
This section provides the “global” conventions, normative references and generic design

metrics reflected in this version of the SIF infrastructure. It serves as a precursor to further

descriptions in following sections

3.1. XML Name Spaces

In the SIF 3 releases, common Infrastructure components are assigned to one namespace

whereas locale-specific Data Model elements are contained in locale-specific namespaces. All

SIF defined namespaces are versioned in a similar manner – the new version (even in a minor

release) is a complete replacement for the older version rather than an incremental addition.

Wildcard version numbers have been removed.

The version number of every XML namespace will be included in its name. For this release,

the infrastructure XML namespace (of whatever platform) is:

http://www.sifassociation.org/infrastructure/3.2

Namespace only include the Major and Minor parts of the version number, excluding the

Revision to allow for backwards compatibility within a minor version.

This namespace may include references to other namespaces including but not limited to:

http://www.w3.org/XML/1998/namespace

http://www.w3.org/2001/XMLSchema-instance

http://www.w3.org/2001/XMLSchema

3.2. Normative References (Standards, versions and options)

The following set of web standards, versions and options are used by the SIF 3.1

Infrastructure to exchange XML documents. The collection of these normative dependencies

is referred to as the Normative Infrastructure Dependency Framework. All SIF 3 applications

and middleware must support the appropriate parts of this framework.

Technology Choice Options / Qualifications

Data Format XML 1.0 JSON 3 via Gossner Notation

http://www.w3.org/XML/1998/namespace
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 29 of 97

Data Encoding UTF-8

Line Protocol HTTP 1.1 (Mandatory) Support for persistent (“keep-alive”) connections

Transport

REST

Common REST HTTP header element and URL

parameter design patterns are used.

Detailed examples of these can be found in the

SIF 3 REST Developer Sandbox (SIF-RS)

Security TLS 1.1

TLS 1.2

XML Query Language XQuery 1.0

XML Document Structure

Representation

XPath 2.0

Payload Compression gzip Dynamically agreed to via content-encoding and

accept-encoding elements in the HTTP Header

3.3. Infrastructure Protocol Layer (HTTPS)

The infrastructure depends upon the protocol layer to provide a reliable connection to move

messages back and forth between Consumer and Provider. This layer is also responsible for

providing protocol-level security by means of encryption and authentication, and may

optionally be utilized to provide data compression, which can be an important factor when

place a large volume of messages or data on the wire.

By delegating the authentication, compression, and encryption to the protocol layer, it makes

the application interface to the transport simpler. For example, a Service Consumer that

wishes to send a Request to a Service Provider first assembles the payload and then invokes

the Create (Message) method on the Connector Infrastructure Service via the standard REST

transport layer conventions. The chosen transport layer takes the message and utilizes its

mapping to the protocol layer to transfer it to the Connector Service where it is taken from the

transport layer and either processed or routed in turn to the specified Service Provider.

In moving through the path from the Service Consumer to the Service Provider, the protocol

layer may have compressed and encrypted the payload and authenticated the Consumer but

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 30 of 97

this is transparent to the higher layers. At the application or adapter level, it is data in and

data out.

3.3.1. HTTPS Guidance

In order to ensure that Service Consumers, Service Providers and the implementations

supporting the Environments Provider interface can interoperate with each other

regardless of vendor or platform, all SIF 3 communicating components must support

the HTTPS protocol.

The SIF 3 REST mapping specifically defines HTTPS usage feature-by-feature, including

REST-compatible values for the HTTP Status codes and header elements.

Where HTTPS options or conventions increase performance and scalability, they have

been adopted. A summary of protocol-level functionality is shown in the table below.

HTTP

Feature

Usage Reason

Unsecured

(HTTP)

Optional functionality for

Brokered Architectures.

A Service Consumer utilizing

HTTPS can be assured that any

Environments Provider

implementation (whether Direct

or Brokered) will interoperate

with it.

A Service Consumer utilizing

HTTP cannot have this

assurance.

HTTP has potential value during testing, and in

production environments that are behind

firewalls and made secure in other ways.

Error Codes Utilized. REST detected faults

are mapped directly to accepted

HTTP error codes.

Provides error logic consistency

Persistent

Connections

Support is required. Establishing TLS connections are expensive.

Persistent connections are therefore utilized to

enable scalable solutions.

Compression Supported Helps scalability where bandwidth is an issue

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 31 of 97

such as in cloud computing. Compression

technology is limited to gzip, and gzip

compressed message exchanges should be

supported by all SIF 3 components.

Pipelining Not supported The SIF infrastructure strives to be stateless.

Multiple

Connections

Supported While this has similar state requirements to

pipelining, the server can control the number of

incoming connections supported.

All Environment Consumers and Providers must encode the message using UTF-8; and must

be able to process UTF-8-encoded messages.

3.3.2. Infrastructure Protocol Layer (SIF HTTPS)

In order to ensure that Consumers, Providers and any middleware supporting the

Environments Provider interface can interoperate with each other regardless of vendor

or platform, all implementations must support the SIF HTTPS protocol.

When using HTTP 1.1 with SIF, [RFC 2616] can be used as a reference. The default

behavior for HTTP 1.1 is to use persistent or "keep-alive" connections. When operating

in this mode, the Consumer may send additional HTTP messages and receive the HTTP

responses using the same connection. Consumers must use persistent connections.

SSL/TLS security is assumed to be supported by the servers involved and minimum

levels set in and enforced by the Environments Provider. The minimum key length of

the SSL Encryption certificate that can be used is 2048 bits. Additional details of such

support are no longer conveyed within the SIF standard.8

3.3.3. HTTP Codes

Any of a number of 2XX and 3XX status codes may be returned in HTTP Responses to

indicate that the action requested by the Consumer (or in the case of publishing an

Event, the Provider) contained in the HTTP Request was received, understood, accepted

and processed “successfully”.

8 See the SIF 3 Product Standard for Requirements: http://cert.sifassociation.org/Shared Documents/SIF 3 Product

Standard.pdf

http://cert.sifassociation.org/Shared%20Documents/SIF%203%20Product%20Standard.pdf
http://cert.sifassociation.org/Shared%20Documents/SIF%203%20Product%20Standard.pdf

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 32 of 97

There are also a range of standard HTTP Error Codes (4XX and 5XX) which will be

returned in case of Error. All these codes are defined and explained in Appendix C of

the Infrastructure Services document.

3.4. UUIDs

The SIF 3 infrastructure leverages Universally Unique Identifiers (UUIDs), per [RFC 4122]. To

avoid the possibility of ID collisions, SIF 3 systems generating UUIDs when an IEEE 802 MAC

address is available, should use version 1 GUIDs (a “1” in character 13) which are unique in

space as well as in time. If an IEEE 802 MAC address is unavailable or if the inclusion of that

address in a GUID poses a compromising security risk, systems must use version 4 GUIDs (a 4

in character 13) which use a (pseudo-) random number-based algorithm.

All infrastructure object UUIDs must then conform to the following XML pattern:

[0-9a-f]{8}[-][0-9a-f]{4}[-][14][0-9a-f]{3}[-][0-9a-f]{4}[-][0-9a-f]{12}

The unique object identifiers of the data model defining the message payloads may also

conform to this requirement. However since they are only referenced by the infrastructure in

constructing single object URLs (ex: students/12345) data model object identifiers are

required only to be valid XML tokens.

3.5. Message-level element snippets and examples

All message level elements are documented below in terms of names and formats. However

they could be represented in one of several ways:

1. As an element in the body of an HTTP Request (SIF Request or SIF Event) or an HTTP

Response (SIF Response or SIF Error).

2. As a unique field in the HTTP Header

3. As a segment in the URL an HTTP Request is being issued to (as the unique object

identifier is represented)

4. As a Matrix Parameter in the URL an HTTP Request is being issued to

5. As a Query Parameter in the URL an HTTP Request is being issued to

Note that only in the first case would the format of the element actually be defined in

XML/JSON when sent across the wire.

http://specification.sifinfo.org/Implementation/2.0r1/References.html#RFC4122

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 33 of 97

4. Basic Infrastructure Framework
This section describes, in order:

● The basic interfaces and components of a SIF Environment

● The message exchange patterns which define the ways in which these components can

exchange data

● The common set of “non-payload” elements contained in all messages being exchanged

● The message interchange “orchestration” required to process a Consumer Request

which changes Service Provider data

● The set of identifiers which “scope” the data in a given exchange

● The requirements imposed to make sure all data exchanges are secure.

4.1. Service Hierarchy

The SIF 3 Infrastructure defines a specific framework for use in constructing a scalable, secure

networking solution for educational data exchange, although it can be utilized to transmit

data specific to other domains. This framework encompasses a collection of Service Providers

accessible to one or more Service Consumers, linked together by a Environments Provider, and is

organized into the following hierarchy.

4.1.1. SIF Environment

The SIF 3 Environment is defined by the set of Service URLs returned to a Service

Consumer in response to a successful Registration Request. These URLs allow creation

of a “customized” Environment. For example, depending on the authentication

provided by the Consumer; the URLs may connect the Consumer to services for either

production or testing, each encompassing a totally different set of Service Provider

implementations.

The set of Service Providers available to a Consumer is subdivided into one or more

“Zones”, and the implementation supplying the SIF Environment for one or more SIF

Consumers is called an “Environments Provider”.

There are two types of SIF Consumer Environment support topologies, which are

indistinguishable to the Consumer.

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 34 of 97

 A Direct Architecture provides only the set of Services bundled with the

Environments Provider implementation. There are no “independent” Service

Providers but starting in SIF 3.1 how to behave like one is described.9 Such a

Direct Architecture often consists of a single “Zone”. It is similar to a single service

implementation supporting multiple Service APIs.

 A Brokered Architecture provides multiple Zones where each Zone offers every

Consumer access to one or more Service Providers which are independent of the

Environments Provider middleware. It is similar to a set of Service APIs each

implemented by a separate component.

Each Environment has a globally unique URL path that should identify the Educational

Organization deploying the SIF solution, and optionally extend to a sub-scope within

that organization. An example of such a URL path in a State-wide deployment might be:

https://tidewater.virginia.edu/sif3/production/Norfolk/12345

This corresponds to a SIF 3 production environment for the Norfolk District, within the

Tidewater Regional Area of the Virginia DOE.

Environments Provider implementations provide data security, service discovery,

guaranteed message delivery, and publish / subscribe capabilities which support

complex communications between applications that have no direct information about

each other, and that may or may not be accessible at any given point in time.

The Environments Provider interface falls into one of the following “types”:

4.1.1.1. Direct Architecture

In the Direct Architecture configuration an Application such as an SIS or LMS

implements the Environments Provider Interface to make its data available to a

Client application that supports the Service Consumer Interface. As noted, there is

only one Consumer within any Direct Architecture, although the SIS or LMS could

support multiple simultaneous Direct Architectures each provided to a different

Consumer application.

A single Service Application in a Direct Zone provides all available Services

(Infrastructure, Utility, and the specific Object and/or Functional ones), possibly

front ended by an Adaptor that includes an Environments Provider Interface. There

9 For an example of this see: xPress - Roster

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 35 of 97

is no middleware component, and all client/service communication is direct (2-

Party). As a result, the Direct Architecture Interface cannot support the ability of a

registered Consumer to provision itself as a Service Provider. The Direct

Architecture implementation receives all Consumer Requests and publishes all

Service Events.

A defined subset of the Direct Architecture Interface requires support for only that

set of service functionality that would be provided by a typical RESTful Service (no

Events, single object per Request and the omission of most Utility Service

Interfaces). It is intended to be implemented by those service applications needing

to provide SIF-compliant Data Object support for straightforward RESTful clients,

such as a Dashboard application running on a mobile device.

4.1.1.2. Brokered Architecture

In the Brokered Architecture configuration, middleware (typically in the form of a

Message Broker or Enterprise Service Bus (ESB)) is enhanced to support the

Environments Provider Interface. This middleware ensures that all Requests,

Response and Events are securely routed between multiple client applications,

which support the Service Consumer Interface, and multiple Service applications

that support the Service Provider Interface.

In all Environments, any non-supported service operation will return an

immediate, “Requested Operation is Unsupported” response.

4.1.2. SIF Zone

The Zone in which the Service is to be found always qualifies every Consumer request

for any Provider Service. The size of a Zone is flexible and could encompass the

educational applications in a single building, a school, a small group of schools, a district

or a region. A SIF solution consists of one or more Zones deployed and configured to

meet educational data sharing and reporting needs.

The presence of multiple Zones allows two or more Service Consumers to each register

as default Zone providers of the same object type within a single Consumer

Environment. This enables SIF solution administrators and integrators to better define

how systems that publish similar objects cooperate within the same organization (e.g.

Student Information Systems and Special Education Systems), by optionally defining

and “clustering” each Service Provider and its set of associated Service Consumers into

a separate Zone in which they can more closely interact. A typical example would be

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 36 of 97

applications in a district level SIF Environment that only need to share data within the

same specific school.

Each Zone has a unique (within the Solution) identifier that corresponds to its scope in

the educational organization. Examples of possible Zone identifiers within the Norfolk

District integration above include:

 RamseySchool

 RamseySchoolTesting

 SpecialEducation

 Districtwide

Scoping might be by individual school, by whether the SIF Environment was test or

production (which can be decided at the Solution level as well), by whether the student

information came from an SIS or Special Education system, or by a combination of all

three. The Zone identifiers are chosen by the administrator and can follow any

convention that best meets the needs of the deploying organizations.

Every Consumer is provisioned with a default Zone, which will be used to scope Service

Requests if no zoneId parameter is specified in the Connector URL when the request is

issued.

4.1.3. SIF Context

The Zone is the primary means of partitioning educational data, applications, and

policies. A SIF Context offers the ability to further partition the data within a Zone and

reflect different perspectives of the data based on end user and administrator needs

and application abilities.

Contexts are not global, they apply only to a single Object or Function Service type, and

are specific to the Data Model of the payload being carried. A Zone can contain

multiple Service Providers that support the same type of objects, as long as they have

registered to do so for different contexts.

For example a supplied context might indicate that the Student Schedule being

requested is for the next term rather than the current one.

If the Consumer knows no Context, or if none are defined for the Object Service type,

the contextId parameter in the Connector URL when the request is issued is set to

DEFAULT. Only one Provider of a given object type in a given Zone may supply objects

with this Context.

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 37 of 97

Any given Service Provider in a Brokered Architecture can provision itself to support

multiple contexts in one or more Zones. If there is no matching Service Provider that

supports a Request qualified by Zone and Context, the Request must fail.

4.2. Message Exchange Patterns (MEPs)

Service Consumers and Service Providers exchange data within an Environment via three

message types: Request, Response and Event

These are combined to support two message exchange patterns:

 Request / Response

 Event Publish / Subscribe.

Each will be described in terms of a Brokered Architecture. In Direct Architectures, all Service

Provider and the Environments Provider implementations are identical, and any exchanges

between these components shown in the diagrams and descriptions below are internal.

4.2.1. Request / Response

A Service Consumer invokes an operation (makes a Service Provider Request) via an

HTTP Request to the Request Connector Service (part of the Environments Provider

Interface). The Request is evaluated, and the specified Service type (ex: Student), Zone

name (specified or Default) and selected Context are used to determine the correct

registered Service Provider to receive it. If no Service Provider corresponds to these

service-scoping parameters, the Request must be rejected.

Otherwise the Consumer Request is routed to the assigned URL of the selected Service

Provider, and the response is immediately returned in the HTTP Response, as shown in

the figure below.

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 38 of 97

4.2.1.1. Single or Multi-object Requests

There are two forms of the Create, Update and Delete requests, which are

generally supported by all Service Providers unless specifically noted:

 Single: Change is being requested for only one object.

 Multiple: Change is being requested for multiple objects.

The Response to a multiple Create, Update or Delete Request will return the results

of the operation for each internal object indicated in the Request. These results

may not match the object ordering in the Request, but they will include both the ID

of the changed object (allowing sub-request / sub-response correlation by the

Consumer) and a “success / failed” status, where “success” indicates that:

 The suggested data change was completely accepted10

 The Service Provider altered its object data accordingly

 The requested change was or will be reflected in an Event issued by the Service

Provider.

10 “Completely accepted” means all requested changes to all elements the Provider supports were successfully made. If

there was a requested change to an optional element the Provider does not support, this is not reported as an error. If

needed, the Consumer can determine this happened by examining the corresponding Event the change generated.

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 39 of 97

4.2.1.2. Immediate or Delayed Response

Any Consumer Request can indicate that the Response is to be either “Immediate”

or “Delayed”. In the Immediate case (illustrated above), the Request is issued as an

HTTP Request, and the Provider Response is returned synchronously in the HTTP

Response. If the Environments Provider determines it cannot obtain the

immediate response information before a Consumer HTTP Request is likely to time

out, it should immediately return an Error Response with HTTP Code 503

(indicating the immediate Request has been rejected and should be reissued as a

delayed Request).

In the Delayed case, a FIFO Queue must be specified to receive the asynchronous

Response from the Service Provider. The immediate synchronous HTTP Response

is from the Environments Provider and indicates only whether the Request has

been “accepted” and is being routed.

After the Environments Provider inserts the Service Response at the back of the

FIFO Queue, the Consumer must retrieve it from the Queue via an explicit request

for the “next” asynchronous message11.

11 Please refer to the Queues Infrastructure Service section in the Infrastructure Services document.

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 40 of 97

4.2.2. Event Publish / Subscribe

Service Consumers may subscribe to one or more Event types (create, update and delete)

issued by one or more Service Providers during its initial “provisioning.”

Service Providers (whether Utility, Object or Functional) post a change Event message

whenever their internal data is created, updated or deleted. These Events are then

routed to all subscribing Consumers, allowing them to synchronize exactly with the

internal data of the Provider12. Any given change Event message can report data

changes of that type for one or more objects (allowing one multi-object change Request

to generate one multi-object Event).

In effect, a Service Consumer subscribes to a given Service once, and receives all

subsequent Events as they occur. Every Event published by a Service Provider goes to

every subscribed Consumer. The Event Connector Infrastructure Service owns keeping

track of the active subscribers, and multiplexing each published Event to all of them.

This frees the Service Provider from having to maintain the subscriber list, or of even

being aware whether there are any active subscribers at all.

12
 SIF 3.0 restricts the issuer of an Event for any Service to be the Service Provider. This is in contrast to SIF 2.x where

non-providers of a Service could, if properly provisioned, publish Events for that Service.

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 41 of 97

4.2.3. Subscriber Error Handling Logic

The following rules describe how a subscriber should process incoming Events when

they are not consistent with its current internal state.

1. An unexpected Create Event arrives with the ID of an object the subscriber

thought already existed. The subscriber should issue an Alert (whether or not it

kept or discarded the Event data).

2. A Delete Event arrives with an ID for an object that the subscriber didn’t know

existed. The subscriber should issue an Alert and ignore the Event.

3. An Update Event arrives with an ID of an object that the subscriber didn’t know

existed. The subscriber should issue an Alert and may do a Query to get the

current contents unless the replacement header is set to FULL, then the change

event may be handled like an add event.

4. An Event of object type A arrives containing an ID which indicates the existence of

an object of type B that the subscriber should have known about, but didn’t. The

subscriber should issue an Alert and do a Query on type B with the supplied ID to

get the current contents of the indicated object.

4.3. Message Parameters

Enabling exchanges of Consumer issued Requests and Provider issued Responses and Events

in a secure and robust manner, over a SIF-conformant REST transport layer is the primary

function of the SIF Infrastructure. Every message exchanged has the following elements,

provided by the sender that specifies the source of the message and the security, destination

and context information. In REST, these element values may be carried as:

 XML/JSON elements in a message payload.

 Fields in an HTTP header (case-insensitive as per HTTP specification)

 Matrix parameters in a Request URL (located after the last URL path segment only and

case-sensitive as per HTTP specification)

 Query parameters in a Request URL (after the “?” and case-sensitive as per HTTP

specification)

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 42 of 97

4.3.1. Design Paradigm

In defining the message headers below, the principle of “what you send is what is

received” was used. Every Service Provider in a Brokered Architecture has had to

previously register as a Service Consumer. For consistency (and except for the

authorization value which for reasons of security changes en route):

 Every HTTP header element and URL parameter inserted by the Consumer into a

Request is seen in unchanged form by the Provider, which receives that Request,

except for those elements directly involved with routing its response (ex: Queue

ID).

 Except where explicitly noted, every HTTP header element inserted by the

Provider into a Response is seen in unchanged form by the Consumer, which

receives that Response, whether immediately or delayed (in response to a “Get

Next Message” request sent to its FIFO Message Queue).

 Every HTTP header element and URL parameter placed by the Provider into an

Event is seen in unchanged form by the subscribing Consumer, which receives

that Event.

As a result, the responsibilities of the Broker in a Brokered Architecture are

concentrated around secure message routing rather than data transformation. In

addition, the numbers of steps necessary to convert a SIF-conformant application

between Direct Architectures Provider and Service Provider in a Brokered Architecture are

minimized.

Each of the three message type headers (Request, Response, Event) will be considered

in the table below.

4.3.2. Parameter Details Summary

The Request, Response, and Event columns use the standard SIF Characteristics.

The Conveyed column using the following abbreviations:

H: HTTP Header

Q: URL Query Parameter

M: URL Matrix Parameter

P: URL Path

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 43 of 97

When more than one conveyance is utilized or a conditional is indicated, see the

explanation for details of it use.

HTTP Header Field
Name

R
e

q
u

es
t

R
e

sp
o

n
se

Ev
en

t

C
o

n
ve

ye
d

Explanation

Accept O HP Used to indicate when JSON is expected in the response

(application/json).

If omitted, may also be indicated by including the “.json” extension

in the URL’s path.

Otherwise results will be conveyed using the default, XML.

accept-encoding C C H Indicate what payload encoding is accepted in the response. Valid

values are: identity (not compressed) or gzip (compressed).

access_token MC Q The token used to authenticate the sender of the message,

authorizing the requested action.

Usually the token/hash value of the Authorization header.

This query parameter is only required when the Authorization

header is not set or another authentication standard is leveraged.

applicationKey MC HQ If the Application Key is not contained in the Authorization header,

then this header must convey this key together with the

authentication tying the request to a particular environment.

The consumer may choose to convey this value in either place, so

providers must honor it in either place.

authenticatedUser OC H Set to the users identification (depending on the authentication

used) when verified by the middleware. The receiving Service

Provider can trust this field by confirming the middleware’s

credentials.

authenticationMet

hod

MC Q The identifier for the authentication method used.

Note: Placing basic access authentication information in a URL

query parameter is highly unsecure and should not be used in any

production systems.

Unless otherwise specified the prefix from the Authorization header

is used: SIF_HMACSHA256/BEARER/BASIC

Authorization MC MC H It is used to authenticate the Consumer and is the basis for

determining whether the Consumer has the necessary

authorization to issue the Request or publish the Event.

When conveyed in URL Query Parameters, access_token and

authenticationMethod are used.

changesSinceMark

er

OC OC HQ Request: URL Query Parameter. Only required if a changes since

request is performed.

Response: HTTP Header. Only required if the request had the

changesSinceMarker as a URL query parameter and no paging is

used or paging is used but the first page is requested.

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 44 of 97

connectionId MC H Identifies the established connection over which the next message

in the Queue is being requested and delivered. It must be a unique

unsigned integer ranging in value from 0 to one less than the

current value of maxConcurrentConnections.

Must be included only when the consumer utilizes multiple

connections to the same queue.

content-encoding C C C H Indicate the payload encoding. Valid values are: identity (not

compressed) or gzip (compressed).

See also: accept-encoding

content-Type MC M M HP Tells the receiver how to parse the body of the message.

Supported: application/json, application/xml (default).

Must be conveyed whenever a body is present.

May be omitted in a request. In that case the mime type is either:

 The mime type indicated on the URL (i.e. .json)

 XML if not defined on the URL or the HTTP Header

See also: Accept

contextId O O HM The “context” of the service provided. The range of possible

Context token values for a given Object or Functional type Service is

defined by either or both the Data Model which the Environment is

supporting, and the administrators of the Zone.

If not provided, it will default to DEFAULT.

This is carried as a matrix URL parameter in Requests, but is

conveyed as an HTTP Header field on Events

See also: relativeServicePath

deleteMessageId OC M The ID of the last message received and processed by the Queue

Owner.

Only used when making Query Requests to the Queue Service

Instance when deleting a previously retrieved message from the

queue.

environmentURI OC H May be returned by the environment provider where the

environment is pre-provisioned.

ETag OC O H Optionally returned by a Service Provider within a Query Response,

equivalent to a “checksum” on all the objects of the type being

queried, which are maintained by the Service Provider.

If it is returned in a Response, the Consumer may include it the

next time it issues any Query to that Service Provider.

eventAction M H The specific type of Event being reported: CREATE/UPDATE/DELETE

generatorId O O H The optional identification token of the “generator” of this request

or event (ex: the administrative clerk who entered in the data that

was responsible for generating a Create request).

jobId MC H Sent with a successful return when a Job Object has been created

(kicking off a Functional Service).

messageId O M M H UUID that uniquely identifies the message that carries it.

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 45 of 97

messageType O M M H One of: EVENT/REQUEST/RESPONSE/ERROR

If not provided, it will default to REQUEST.

methodOverride MC H HTTP PUT:

Included in an HTTP PUT message when it is conveying a multiple

delete request, since an HTTP DELETE is not allowed to have a

payload. Valid values are DELETE or UPDATE.

HTTP POST:

Included in an HTTP POST message when it is conveying a QBE

request because the HTTP GET is not allowed to have a payload.

Valid values are GET (QBE) or POST (Create).

mustUseAdvisory O HQ Informs the Service Provider that if the "suggested" RefId in the

Request cannot be assigned to the new object, the Request should

be rejected. Valid values are true and false.

navigationCount O H The total number of objects in the set of results generated by the

initial Paged Query that is associated with the returned

navigationId.

navigationId MC O H Identifies state maintained in the Service Provider for the Consumer

issuing the Paged Query Request. If returned, the Consumer must

supply the navigationId value when requesting subsequent Pages of

that object type from that Service Provider.

This should not happen when queryIntention is set to NO-

CACHING or ONE-OFF.

navigationLastPag

e

 O H It is included as an aid for the Consumer in detecting when to stop

issuing Paged Query Requests.

navigationPage O MC HQ The number of the Page to be returned. If it is outside the range of

results (which does not constitute an error) an HTTP Response with

a code of 204 (No Content) will be returned. The first page is

indicated with the value 1 (i.e. navigationPage=1).

navigationPageSiz

e

MC MC HQ This is included in every Paged Query Request, and indicates the

number of Objects to be returned in the corresponding Response

Page. If the Page Size specified is too large for the Service or

Environments Provider to supply, an Error with code 413 (Response

too large) will be returned.

When contained in the Response, it indicates the actual number of

objects on the returned Page.

Order O Q Orders the result set by one or more specified elements and

directions.

queryIntention O H If the Consumer intends to follow up with further Paged Queries

after this one, this field must be included in the Paged Query

Request.

Valid values are: ALL/ONE-OFF/NO-CACHING

ALL: The Consumer intends to come back for the remaining

pages of data. It is expected that the provider would return

a navigationId HTTP Header in this case.

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 46 of 97

ONE-OFF: The Consumer intends to make only this query,

however the results may come from a cached source.

NO-CACHING: The Consumer needs the data returned as it

currently exists in the provider’s data store.

It is a “hint” to the Service Provider that maintaining Consumer state

(and supplying a navigationId) would be advantageous.

When not provided the default value is ONE-OFF.

queueId MC H Contains the identity of one of the Consumer’s assigned Queues to

which the delayed Response or Job Object Events from the Service

Provider related to this request must be routed.

See also: requestType, jobId

relativeServicePath MC H Replicates all information contained in the segments of the Request

URL following the Request Connector. This could include the

Service name, XQuery Template name or Service Path defining the

payload format, and any accompanying URL matrix parameters

(Context and Zone).

URL Query parameters are included.

The Environments Provider places it into all delayed Responses (and

would therefore not be supplied by a Service Provider in a Brokered

Architecture), as an aid to stateless Consumers.

 It is optional for immediate Responses.

Replacement O H Set to FULL (current values of all object elements) or PARTIAL (only

elements whose values have changed)

If not set, it is defaulted to PARTIAL.

requestId MC MC H Only required for delayed Requests.

A Consumer specified “token” that uniquely identifies every delayed

Request issued by the Consumer. It could be as simple as a

monotonically increasing integer. Used to correlate the delayed

(asynchronous) Response with the original Request. It could be as

simple as a monotonically increasing integer.

requestAction O H Indicates what the request is trying to do.

Defaults:

 POST: CREATE

 PUT: UPDATE

 DELETE: DELETE

 GET: QUERY

 HEAD: HEAD

requestType O H One of IMMEDIATE or DELAYED. If not set, it defaults to

IMMEDIATE.

responseAction M H This must exactly match the requestAction value contained in the

HTTP header of the Request being responded to.

Valid values are: CREATE/UPDATE/DELETE/QUERY/HEAD

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 47 of 97

serviceName M H The name of collection being conveyed in the event.

serviceType O O O H One of:

UTILITY/OBJECT/FUNCTIONAL/SERVICEPATH/XQUERYTEMPLATE.

If not provided, it will default to OBJECT

sourceName MC H The applicationKey is added by Brokered Architecture to all

Requests before forwarding to the Service Provider.

Used by the Service Provider in Brokered Architiectures when

issuing an Alert concerning an erroneous Request.

Timestamp MC M M HQ Date / Time of Event creation (in ISO-8601 format also used as the

basis of xs:dateTime)

If not need for authentication, may be omitted in the request.

If needed, only for requests this value may be provided as a URL

query parameter instead of a header.

Vary O H This HTTP Header can be set by the provider to indicate that it

supports compression. It would only be set if the consumer or

broker calls the provider with uncompressed payloads where the

provide could deal with compression. In such a case the HTTP

header vary would take the following value:

Vary: Accept-Encoding

Where O Q A restricted XPATH expression that qualifies which among the set of

all objects supplied by the Provider will satisfy the query and be

returned.

zoneId MC M HM Indicates the Zone the Request should be routed to. It is a token

that must have a value which:

 Is unique from any other Zone ID

 Identifies an entry in the Zone Registry if that Registry

Service is present.

If not specified in the Consumer’s Request, the Request Connector

will insert the Consumer’s “Default” Zone ID (assigned to the

Consumer when it initially created its Environment).

This is normally carried as a matrix URL parameter in Requests, but

conveyed as an HTTP Header field on Events.

[name matches

XQuery Template

parameter]

MC Q

Supplies value to a parameter of the XQuery template whose token

is in the last URL segment of the Query Request.

Note: There are a number of elements that can either be provided as HTTP Header or as

URL query parameter (i.e. navigationPage, navigationPageSize etc). If a value is provided as

HTTP header and as URL query parameter then the HTTP Header must take precedence over

the URL query parameter.

Note: The Authorization Token HTTP Field value in the Request as originally issued by the

Service Consumer in a Brokered Architecture will be replaced by the Request Connector with

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 48 of 97

one based on the sessionKey of the recipient Service Provider before re-issuing the Request to

that Provider.

Effectively, the Service Provider receives a Request with an Authorization Token value

identical to the one it would have used if it had issued the Request. This both maintains

security for the Consumer, and serves to validate the delivered Request to the Provider.13

4.3.3. URL Matrix Parameters

Where URL matrix parameters are present, they are restricted to the rightmost segment

of the URL located directly to the left of the “?” which marks the start of the Query

parameters. This conforms to common usage and is supported by the majority of REST

Developer toolsets.

Matrix parameters are primarily used in SIF 3 to convey Zone and Context qualifiers for

the service destination of a Consumer Request. This serves several purposes.

 Zone and Context “qualify” the service receiving the request, rather than being

part of the arguments passed to the service in the request. Matrix Parameters

were specifically designed for such usage.

 When the Zone or Context changes, any previous request information caching by

the recipient Service should be discarded. Specifying them as matrix parameters

allows this to happen naturally (since they are effectively part of the Service URL).

 It avoids any confusion between the Zone and Context ID and the Query or

XQuery Template parameters which are included after the “?”

 It provides clean removal of the previous message so the current one can be

retrieved.

Here is an example of a paged Query request URL containing both types of URL

parameters:

../students;zoneId=DuncanHigh2014;contextId=current?where=[(

name/nameOfRecord/familyName ="Smith")]

The following table describes the URL matrix parameters utilized.

13 Further details about the authorization token and the authentication methods utilized in SIF 3 may be found in the

description of the Environments Service in the Infrastructure Services document.

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 49 of 97

4.3.4. Notation Headers

Java Script Object Notation (JSON) is an alternate way to represent an object in a tree

like structure. JSON is desirous for a variety of reasons including: good wire efficiency,

strong programming support, and satisfactory human readability. Since SIF’s data

models are formally defined using XML Schemas, JSON conversion is handled through a

set of generic patterns (Goessner Notation). This results in immediate support for any

convertible object.

Patterns

XML JSON

<e/> "e": null

<e>text</e> "e": "text"

<e name="value" /> "e":{"@name": "value"}

<e name="value">text</e> "e": { "@name": "value", "#text": "text" }

<e> <a>text text </e> "e": { "a": "text", "b": "text" }

<e> <a>text <a>text </e> "e": { "a": ["text", "text"] }

<e> text <a>text </e> "e": { "#text": "text", "a": "text" }

Considerations

While several considerations need to be made in order to ensure the XML object is

readily convertible to JSON and back again14, one is of significant impact for those

developing SIF solutions. For privacy reasons, the extension points introduced

with the data models, intended to run over the SIF 3 infrastructure, rely on one or

more third party namespaces and schemas. However, when converting to JSON

using the adopted patterns namespace information is lost. This means the

adaptor receiving the JSON representation of the object may need to know of all

utilized extension points. The receiver must choose how to handle these

14 http://www.xml.com/pub/a/2006/05/31/converting-between-xml-and-json.html

http://www.xml.com/pub/a/2006/05/31/converting-between-xml-and-json.html

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 50 of 97

extensions. Known approaches include: employing a path mechanism15 to pull

only the data of interest and use the JSON object either without validation or with

a custom validation mechanism, changing the namespace of the affected elements

to what is expected ahead of validation, or even stripping the extended elements

out completely.

For this release of the SIF Global Infrastructure all events continue to be assumed

to be in XML format. In a future release we will allow for subscriptions to objects

in JSON.

Conveying Notation

When receiving a message it is important to know how to parse it. Likewise when

creating a response, it should be packaged so that the receiver can understand it.

In order to handle the notation of the payload or convey the desired notation of

the response there are a collection of methods. They are presented here from

most authoritative to least.

Headers

In order to indicate the payload of this message the Content-Type header should

be used. When indicating compatible notations for the response the Accept

header should be used.

Accept application/xml

application/json

Content-Type application/xml

application/json

Extensions

As an alternative to setting the above headers a consumer may instead employ a

URL postfix to its requests. When doing so, both any included payload must be in

this format and any successful response payload must follow the indicated

15 http://goessner.net/articles/JsonPath/

http://goessner.net/articles/JsonPath/

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 51 of 97

notation. This indicator is only checked in the absence of the Accept and Content-

Type headers.

XML: ...students.xml

JSON: …students.json

Default

In the absence of the above indicators, the software must assume XML is both

being sent and is desired in any response.

Precedence

If the HTTP headers are set and the URL postfix is used then the HTTP headers will

take precedence.

4.4. Request / Response / Event Message Exchange Choreography

The following steps occur in the processing of every Request issued to a Service Provider,

including the optional generation of an Event reflecting one or more changes to the internal

Provider data resulting from the object changes contained in the Request.

Process Table

Step Process Flow Control

1 The Consumer of a Service constructs the Request payload

and provides the required routing elements described above.

The Consumer sends the Request to the Connector Service via

an HTTP “Request”.

2 The Request Connector determines the appropriate Service

Provider.

 If no Zone is specified, the default Zone for that

Consumer is inserted into the Request zoneId matrix

parameter.

 If no Context is specified, a contextId matrix parameter

value of DEFAULT is inserted into the Request URL.

These are combined with

the specified Provider Type

and Provider Name. If no

existing Service Provider can

be found which meets these

specifications, go to step 3.

If the Consumer does not

have proper authorization to

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 52 of 97

invoke this request on the

selected Service Provider, go

to step 3.

Otherwise go to step 4.

3 The Request is rejected. The Requests Connector sets the

error code to indicate the reason.

The Connector sends an

Error HTTP Response back

to the Consumer, and

terminates this message

thread.

4 The Request is valid. If the requestType element

indicated an “Immediate”

Response, go to step 6

(leaving the HTTP Request

still “opened”).

5 A “Delayed” Response was asked for. The Connector sends an

“Accept” HTTP Response back to the Consumer to indicate the

Request can be routed and will be delivered to the Provider.

At this point, Request

delivery is guaranteed.

6 The Requests Connector replaces the Consumer’s

Authorization Token with the value of the Authorization Token

the selected Service Provider would have used if it had

generated this request as a Consumer16. This both prevents

the Consumer’s authorization rights from being abrogated by

the Provider, and proves to the Provider that the incoming

request message can be trusted.

The Connector reissues the Request to the URL supplied by

the Service Provider, subject to any XML Filtering rules

imposed by the site administrators.

7 The Service Provider receives, unmarshals and processes the

Request, according to the value of the requestAction. The

If the Request does not

result in a change to the

16 Please refer to the initial Consumer Registration section (specifically the Environments Provider create request) in the

Infrastructure Services Document for further details about how Consumers are authenticated.

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 53 of 97

Zone, Context and Service name arguments inform a multi-

object Service Provider of which object type the Request

applies to.

Service Providers internal

data, go to step 11.

8 The Request resulted in changes to one or more internally

held Service Provider Objects. The Service Provider may

initializes one or more Event messages, with the appropriate

zoneId, contextId, serviceName, and generatorId values.

9 For each remaining Data Object whose value was affected by

this Request, the Service Provider adds the object changes to

the Event messages.

If the next changed object

would exceed the Page Size

for Events of this object type,

go to step 10.

When all object changes are

reflected in the Event

message, go to step 10.

10 One or more Events are ready to be sent. The Service Provider

completes the Event messages, by calculating or copying an

authorization token value and “publishes” the Events in an

HTTP Request to the Events Connector.

If more object changes

remain be processed, go

back to step 8

11 Any change Events resulting from the Request have been

posted. The Request must now be responded to.

Send the Response back as the HTTP Response equating the

following Response header elements with their Request

counterparts.

* requestId (if specified)

* generatorId (if specified)

* responseAction match requestAction

The Service Provider

processing is completed at

this point.

The Response and Event

messages still need to be

delivered.

12 The Requests Connector receives the HTTP Response. If the original Consumer

Request indicated the

Response should be

immediate, go to step 16

13 The Consumer requested a delayed Response.

The Connector then adds the Response to the back of the FIFO

The process sequence

suspends until the message

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 54 of 97

Queue Instance which the Consumer associated with this

Delayed Request.

moves to the front of the

FIFO Queue. When it does,

go to step 14

14 The Response reaches at the front of the Consumer’s FIFO

Queue.

The process sequence is

blocked until the Consumer

issues a “Get Next Message”

operation on the Queue.

When it does, go to step 15.

15 The Queue Instance returns the delayed Service Provider

Response as the HTTP Response to a “Get Next Message”

Request issued by the Consumer to its FIFO Queue.

All Delayed Response

processing has been

completed. Go to step 17

16 The Response has arrived for an Immediate Request. Send the

Response as the HTTP Response to the original HTTP Request,

completing the connection.

All Immediate Response

processing has been

completed. Go to step 17

17 Request processing (immediate or delayed) has been

completed.

If the Request did not result

in a change to a Service

Provider’s data, no

corresponding Event will be

generated. All processing is

complete.

Otherwise go to step 18

18 The Service Provider has created an Event message

corresponding to the changes caused by the Consumer

Request, and has sent it to the Events Connector for

“publishing”.17

If there are no subscribers to

this Event type, all

processing is completed.

Otherwise go to step 19

19 The Events Connector has received the Event published by the

Service Provider in response to the original Consumer

If there are no further

subscribing Consumers who

17
 In this case, the changes to the internal data were caused by successfully processing a Consumer request, but the

process is identical to handling changes initiated by the Service Provider itself.

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 55 of 97

Request.

The Connector must deliver the Event to the Queue of the

next Subscribing Consumer.

need to get this Event, all

processing is completed.

Otherwise go to step 20

20 The next destination for the Event message has been

determined.

The Connector removes the Provider’s Authorization Token.

21 Add the Event to the back of the FIFO Queue that the

Consumer associated with its subscription to Events of this

type.

Event delivery is now

guaranteed whether or not

the Consumer is currently

active. At this point the

processing splits ... the

Events Connector goes back

to step 19.

The process sequence stops

until the message moves to

the front of the Queue.

When it does, go to step 22.

22 The Queue Instance returns the Service Provider Event as the

HTTP Response to the “Get Next Message” Request issued by

the Consumer to the FIFO Queue.

All processing resulting from

the issuance of the

Consumer Request has been

completed.

4.5. Error Handling

There are several points in the above process where the Service Consumer could detect what

is (or what it perceives is) an error in an arriving message.

Error Detection Occasions Possible Causes Action

The Request Connector rejects

a Request posted by the

Consumer.

An invalid Destination Service or an

Authorization violation (the Consumer was

not properly provisioned to request this

Return an immediate

SIF Error Object.

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 56 of 97

Service)

The Consumer may

create an Alert18.

The Service Provider rejects a

Request from the Consumer.

The Request had an invalid object

identifier (ex: A Query for an Object the

Provider did not think existed) or the XML

payload of the Request was not aligned

with what the Service Provider understood

to be the object schema.

Return an immediate or

delayed SIF Error

Object.

The Service Provider

should create an Alert.

An Event or Response is

received which is deemed to be

invalid by the Consumer

The Event had an invalid identifier (ex: an

“update” Event for an object the Consumer

did not think existed) or the XML payload

of the Response was not aligned with what

the Consumer understood to be the object

schema.

The Consumer should

create an Alert.

4.5.1. SIF Error Message

The Service Provider returns a SIF Error Message to a Consumer issuing an erroneous

Request.

The actual format of the Error Object is shown below.

Element or

@attribute

Char Description Type or Value

@id M The identity of the Error Object Format: UUID

Code M Corresponds to the value contained in the HTTP

Header Status field in which the Error Object is the

payload.19

Its presence allows the Error Object to be self-

Format:

xs:unsignedInt

400 (Bad Request)

404 (Object not

18 Please refer to the Alerts Service in the Utility Service document for further details.

19 See the HTTP Error Code section below for the complete list of such codes.

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 57 of 97

contained when/if it is persisted. found)

See: 4.5.2

Scope M Attempted operation. Ex: “Modify Student” Format: xs:string

Message M A simple, easy to understand, compact description

of the error. The primary consumer of this message

is the application user. Example: "Unable to open

database."

Format: xs:string

(xs:maxlength =

1024)

Description O An optional error description that is more complete

and technical in nature. It is to be used as a

diagnostic message in trouble-shooting procedures.

Example: "The 'Students' table is opened in exclusive

mode by user 'ADM1' (dbm.cpp, line 300)."

Format: xs:string

4.5.2. SIF HTTP Error Codes

An HTTP Error Code will be returned in the HTTP Status field in the HTTP Header,

whenever an Error object is returned in response to a Request. This field can have one

of the following values:

Error Code Meaning Example of Use

400 Bad Request XML error, version problems or error specific to a particular

object type such as the omission of a mandatory element or an

unsupported query or an unsupported order clause

401 Unauthorized Illegal Consumer Authorization token accompanying the request

403 Forbidden Consumer Authorization token is legal, but Consumer is not

authorized to issue the requested operation

404 Not Found Object ID does not correspond to an existing object. This can

occur for Query as well as Update or Delete operations

No Service Provider has been found to match the parameters

(Zone, Context, Service name) in the Request.

405 Method not

Allowed

Paged Query Request issued to Object URL rather than Object

List URL.

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 58 of 97

Create Request issued to Provider Registry Service in a Direct

Zone.

409 State Conflict An attempt has been made to create an existing object.

Attempt to create an Environment with an applicationKey for

which an environment does already exist (and multiple

instances are not configured).

412 Precondition Failed An attempt has been made to modify an object when the

Requester was not basing the modification on the latest version.

413 Response too large A non-paged Query returning all objects was too large for the

Service Provider (or Broker) to include in a single Response

message.

500 Internal Service

Error

An unexpected error occurred in servicing the Request.

503 Service Unavailable Returned only for Consumer Requests requiring an immediate

Response. This error indicates that the expected Service

processing time for the Request is great enough that the

Consumer must reissue it as a Request requiring a delayed

Response.

4.6. Success Handling

This class of 2XX and 3XX status codes indicates the action requested by the issuing Service

Consumer was received, understood, accepted and processed successfully.20

Error Code Meaning Example of Use

200 OK The standard HTTP response code for all successful HTTP

requests, with the exceptions noted below

201 Objects Created One or more objects have been successfully created

202 Accepted

The SIF Request contained in the HTTP request has been

accepted for routing, but the processing has not been

completed. This is the status code returned in the HTTP

response to every delayed SIF Consumer Request, as well as

20 A Service Provider issuing an Event to the Event Connector is treated as a Consumer issuing a Request.

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 59 of 97

every published SIF Provider Event.

204 No Content All change Requests have Responses with contents. This is the

response to a Query for which no existing object qualified.

304 Not modified The specific response when a Query asks for objects which have

changed, and none have

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 60 of 97

5. Service Operations
This section provides a more detailed description of the various types of Services and the set

of Requests, Responses and Events that each type supports.

There are four (4) types of Service Provider Requests which a SIF 3.1 Service Consumer can

issue:

1. Query

2. Create

3. Update

4. Delete

5. Head

Many (but not all) Service Providers will publish Change Events when they detect one or more

elements in the data they provide has changed, either as the direct result of a Create, Update

or Delete Consumer Request, or due to some Service-internal mechanism (ex: browser-based

input).

The Create, Update and Delete Requests can all contain multiple embedded object-specific sub-

requests of the same type. For example a single Modify Request can result in an Object

Service Provider changing data element values in multiple objects, and a single Delete Request

can include the IDs of multiple objects that are to be deleted.

Change Events can also contain multiple embedded object-specific sub-events of the same

type. So in the above case, when a single Consumer-issued Modify Request arrives which

contains modifications for N objects, the Service Provider can process all of them, issue a

single Response back to the Consumer, and then publish a single Event to its subscribers

reflecting all modifications to the affected N objects.

The maximum number of object-specific sub-requests that may be “packaged” by a Consumer

into a single Object Request invocation varies by object type and is determined by the

Administrator. The same value also applies to the maximum number of objects of that type

that may be packaged into an Event.

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 61 of 97

5.1. Service Types

The following table describes the full range of SIF 3 Service types provided to SIF 3 Consumers.

They are distinguished in a Consumer Request by the value of the “serviceType” HTTP Header

Field.

Service Type Description

Data Object A Data Object is a self-contained collection of XML/JSON data elements. Its format is

standardized in an XML Schema that is part of the locale-specific Data Model rather

than the SIF 3 Infrastructure.

The Data Object Service is the “authoritative source” for all data elements contained

in all data objects of a specific type.

Utility

Object21

A Utility object is also a self-contained collection of XML/JSON data elements. Its

format is standardized in an XML Schema that is defined by the SIF 3.0 infrastructure

and is independent of any locale-specific Data Model.

The Utility Service (and by implication the Environments Provider which often

implements it) is the “authoritative source” for all data elements contained in all

Utility Service objects of a specific type.

Named

XQuery22

XQuery technology is used to standardize the way in which Query Responses can be

defined to meet important Consumer requirements. When the token representing

an Named XQuery is specified in a Query Request, the Response can do some or all

of the following:

 Contain a subset of expected object elements (ex: no Student Health or

Discipline information)

 Include calculated aggregates based on the data in multiple objects of the

same type

 Represent a combination of data elements contained in multiple objects of

multiple types

The format of the Named XQuery Response is specified in an XML schema such as

object in the data model or one specifically defined to match that XQuery. In terms

of validation however, all elements of the schema are generally considered optional.

In addition, the inclusion of the Template itself in the Data Model binding

standardizes how the defined elements of the Response must be produced.

21 For further details on individual Utility Services, please refer to the Utility Services document

22 For further details on Named XQuerys, please refer to the following table and the appropriate subsection below.

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 62 of 97

Service Path23 Service Paths are basically predefined URL segments that are used to optimize

Consumer Queries in important use cases. For example, a Query made to a URL

containing “sections/1234/students” will return all Students enrolled in Section 1234.

Such Service Paths are typically defined as part of the “binding” of a Data Model to

the SIF 3 Infrastructure, and are most commonly used to “bridge” object associations.

The XML schema defining the formats of the objects contained in the Response

payload is determined by the last segment of the Service Path (“students” in this

case.).

Functional

(Job Object)

A Functional (or Job Object) Service encapsulates stateful process behavior as well as

the data exchanged between applications implementing that process.

It does this by supporting some or all of the methods of a Data Object Service

Provider interface but applying them to educational processes such as StudentLocator

and EndOfYearRollover rather than Object data elements.

When a Consumer issues a “Create” to a Functional Service, it results in the creation

of a new executing instance of the Function (a “Job Object instance”) rather than a

new Data Object.

From a conceptual point of view, each Job instance contains a set of named “phases”,

identical to every other Job created by that Function Service. These discrete phases

define and encapsulate the sub-actions that need to be done, but they do not

explicitly determine the ordering (since the phases defining a Function may be

executed in different order, depending upon the implementation and the needs of

the site where the Functional Service is deployed).

Once created, the Job instance can be queried to find out where in the process it is

(what is happening, what is the current status of each completed phase) and the Job

may issue Events as its internal phases are completed.

Each Job Phase is represented by:

 A Phase name

 A status (NotStarted, InProgress, Completed, Failed)

 A defined Object Service corresponding to that Phase (which supports some

or all of the set of service operations)

The creator of the Job can therefore:

 Monitor the status of the Job (through querying the Job instance or by

receiving Job level Events)

23 For further details on Service Paths, please refer to the following table and the appropriate subsection below

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 63 of 97

 Indirectly impact the Job through creating individual phase states.

 Receive Events (where supported) from the various Phases of the Job.

 Where appropriate Delete the Job.

Infrastructure Like Utility Services, all Infrastructure Services are independent of any locale-specific

Data Model. Each supports a defined Service Interface, which when taken together,

define the Environments Provider Interface.

However unlike all other Service Providers, the Consumer has a separate URL

(returned at Registration time) for each Infrastructure Service, which it must use to

directly invoke Requests on that Infrastructure Service.

Depending upon the Infrastructure Service, each interface supports some or all of

the standard four service operations (Query, Create, Update, Delete), although no

Infrastructure Service posts Events when its internal data changes.

The following table further distinguishes between these service types. It omits Infrastructure

Services as they each have their own individual URLs (supplied in the Environment) and do not

construct URLs relative to the RequestsConnector as shown in the examples below.24

All Service types shown below have entries in the Providers Registry Utility Service.25

Entry Type URL Example Operations Events Dynamic Query

where clause

Data Object students Query, Create,

Update, Delete and

Head

YES Normally YES unless

specifically restricted

in the Data Model

Binding or a Profile.

Utility Object zones Defined in Utility

Services document

Defined in

utility services

document

NO

Named XQuery StudentSnapshot Read Only NO NO

Service Path sections/{}/stude

nts where “{}”

Read Only NO Normally NO unless

specifically enabled in

24 For further details on the entire set of Infrastructure Services, please refer to the Infrastructure Services document.

25 For further details on the Service Providers Registry, please refer to the Utility Services document

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 64 of 97

indicates the

section to report

Students for by

ID

the Data Model

Binding or a Profile.

Functional

Service

studentRecordEx

changes

Query, Create, and

Delete

YES NO

5.2. Requests

In terms of the URLs where these Requests are issued, assume an object type called Student,

with a Student Service Provider located at a URL ending in students and an existing Student

object with an ID of 12345.

Request Issued to URL Effect when successful

Query (non-paged) ../students Returns data for all Students

Query by Object ID ../students/12345 Returns data for Student 12345

Query (paged) ../students Returns next page of Student Objects

Query (paged) ../students/12345 Never successful. Returns Error with

code 405 (Method not Allowed)

Create (single object) ../students/student26 Creates a Student and returns its ID

Create (multi-object) ../students Creates multiple Student objects and

returns their IDs

Update (single object) ../students/12345 Updates specified Student

Update (multi-object) ../students Updates multiple Student objects

Delete (single object) ../students/12345 Deletes specified Student

Delete (multi-object) ../students Deletes multiple Student objects

26 On some REST development platforms, this URL is inconvenient or simply not possible to access. In those cases, the

requester should issue a multi-object create to URL “../students”, which contains only a single object of type “student”.

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 65 of 97

5.3. Service Request Identifiers

The following infrastructure identifiers are utilized in support of messages of more than one

type. Each has been described earlier.

Identifier Description

environmentId An administrator defined globally unique token that identifies the Environment

granted to the issuer (whether Consumer or Provider) of this message.

zoneId An Administrator defined name that uniquely identifies a Zone entry in the Zone

Registry Service currently operating in the Consumer’s Environment. Typically

used to scope the Service Provider which receives a given Consumer Request.

contextId An Administrator or Data Model defined name that uniquely identifies the

Context in the Zone in which the message is being exchanged.

messageId A transport specific ID that accompanies all Requests, Responses and Events. It

must be convertible to an RFC 4122 compliant UUID, (minus the urn:uuid prefix)

with the 32 hex digit SIF Message ID contained in the string “{8 digits}-{4 digits}-{4

digits}-{4 digits}-{12 digits}” with the 13th digit set to a 4 (random) or a 1 (MAC

Address).

Note: The messageId is useful in identifying a specific message, especially in

support of error analysis.

[id] An immutable identifier attached by a Service Provider, to every object it

supports. This identifier is unique to the Provider, and opaque to the Consumer.

Unless explicitly defined otherwise, when used to identify an Infrastructure or

Utility Service object, the ID format is always a UUID. However external Data

Models may define the format for their objects as a more general xs:token.

navigationId Optionally returned in a Paged Query Response, the navigatorId identifies state

maintained in the Service Provider for the Consumer issuing the Paged Query

Request. If returned, the Consumer must supply the navigationId value when

requesting subsequent Pages of that object type from that Service Provider.

authorization Present in all Requests and Events, it is based upon the sessionToken assigned to

the Consumer after successfully creating its Environment. It is used to

authenticate the Consumer and verify that it has been authorized to issue the

Request or Event.

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 66 of 97

generatorId Optional in change Request and Events. When present it identifies the

“generator” of the Request and is carried over into any change Event resulting

from servicing that Request.

It might take the form of the email address of the administrative clerk who

entered in the data.27

5.4. Object-level Query

The ability for a Consumer to obtain object information by issuing Queries to identified

Service Providers is one of the fundamental cornerstones of application interoperability.

If the provider is not able to understand or implement the query, an error response with code

400 is expected.

The following two HTTP Header fields are unique to all forms of Query Requests and

Responses:

Name Description Example Value

or Format

requestId Whenever this field is present in the Query Request, it is returned

in the Query Response.

It is a Consumer specified “token” that must uniquely identify

every delayed Request issued by the Consumer. It is used to

correlate the delayed (asynchronous) Response with the original

Request.

 It could be as simple as a monotonically increasing integer.

 17

eTag Optionally returned by a Service Provider within a Query

Response. In SIF 3.0 usage such an eTag is equivalent to a

“checksum” on all the objects of the type being queried, which are

maintained by the Service Provider.28

Format:

Opaque Token

27
 If the SIF Data Model determines the payload of the Request message, the value of any generatorId element may be

the object ID of the responsible user.

28 In SIF 3.0 usage, the eTag does not serve as a watermark (i.e. it applies to ALL objects of that type supported by the

Provider rather than any specific one), so a change in any object will affect the eTag returned to all Consumers. On a

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 67 of 97

If it is returned in a Response, the Consumer may include it the

next time it issues any Query to that Service Provider.

If any data change occurred to any object of the type being queried

since the eTag was returned to the Consumer, that Request is

processed normally, whether or not any of the altered objects would

be returned in the Response to this Query.

If there were no object data changes since the eTag was created,

the Service Provider returns an HTTP Response with a Code of 304

(Success – no data modified)

The SIF 3 functionality described in this section covers “unqualified” object level retrieval,

where the Query Responses return all elements from all objects associated with the Query

URL.

Subsequent sections will show how this functionality may be extend to include “qualified”

retrieval where the Query Responses return only selected elements from a subset of objects

meeting specified “where true” conditionals.

5.4.1. Object-level Query Options

The following Query options are supported independently of whether the Query is

immediate or delayed, and (for Batch or Immediate Paged) whether the Query is for the

entire object collection or further qualified by an Named XQuery or dynamic Where

Clause.

Object Query

Retrieval Option

Provider Response if successful

By Id A Query by Id is issued directly to the URL corresponding to a specific object

(ex:../students/12345 where “12345” is the unique Identifier of the student).

The Query by Id Response contains all data for the object corresponding to the

specified Id. If successful, every supported element in that object is returned.

Query containing an eTag, the requirement to have an “if-none-match” HTTP Header element accompanying the eTag to

detect object changes has been waived.

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 68 of 97

Bulk The Bulk Query is made to an object list URL (ex: ../students) with no query-related

qualifiers..

The Bulk Query Response (whether immediate or delayed) will contain all data for

all existing objects of the indicated type supported by the Service provider. If the

size of the returned data exceeds the limits of what either the Service Provider or

the Environment can support in a single message, an Error with code 413

(Response too Large) is returned.

Paged Interactive A Paged Interactive Query is issued to the URL corresponding to the object list (ex:

../students). It always requires an immediate response.

It is typically one in a series of successive Consumer queries for the object data.

Each such Query Request is for a “page” (a bounded subgroup) of the set of all

objects that meet the constraints imposed by the Query

Example: A teacher holding a tablet device runs a simple Service Consumer REST

application that interactively queries the Assessment System for the first 30

Student scores, which are returned immediately.

After they are displayed, the teacher may hit “next” whereupon a new interactive

Query will be issued, and the next 30 Student scores will be immediately returned

and displayed.

Pages will be defined in more detail in a subsequent subsection.

Paged Batch Similar to the Paged Interactive Query, except here the Consumer issues a single

Delayed Page Query (typically for all the objects), and the entire set of Query

Response pages are “returned asynchronously to the specified Consumer Queue

without any further Query being issued.

The Consumer may get the individual Query Responses out of the Queue at its

leisure. They are identical in form to the Paged Interactive Responses except that

they all share the same Request ID (because they were all generated in response

to a single Request).29

29
 Support for Batch Queries is the responsibility of the Environments Provider rather than the individual Service

Provider, and whether that support is present will be indicated in the created Environment. If supported, the

Environments Provider will “break open” the single Paged Batch Query into a set of Page Queries which it will

individually forward to the Service Provider until the end of the query results is reached. Each response returned will be

inserted into the specified Consumer Queue.

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 69 of 97

5.4.2. Query Response Pages

This subsection expands on exactly what a Query Page is, and the HTTP header fields

that support it.

A “Page” is a bounded collection of objects of the same type from the same Service

Provider, returned in response to a “Paged Query” (interactive or batch).

There may be many such pages, each containing a different set of objects, which taken

together comprise the full set of objects which satisfy a given Query request. A given

Paged Query may be either immediate or delayed and may or may not have associated

query qualifiers.

Paged Queries are the primary way in which Consumers can “walk” through large

collections of objects in a controlled fashion.

Paged Query Use Case

There are 10000 SIS Student records which a Student Contact System Consumer must

acquire to initialize itself to a new installation.

The Consumer assumes the results will be too large to be reported back in a single Response,

so it issues a series of Paged Queries, each with a Page Size of 50 (the maximum number of

objects it can contain) and an increasing value for the Page number. The first Response

contains objects 0-49, the second Response contains objects 50-99 etc.

After 20 such Queries, the Consumer reaches the end of the data for the Query results, and

the set of exchanges is complete.

Alternatively the Consumer could have issued a single (delayed) Batch Query Request and the

Environments Provider would then issue the 20 Queries, and asynchronously deliver the 20

Query Responses to the supplied Queue Instance, where the Consumer could then retrieve

them one at a time in synchronous fashion.

From the point of view of the Service Provider, both cases are identical, in that a Paged Query

Request is received and a Query Responses is immediately returned, and this happens 20

times.

In the case where a Consumer is issuing a long series of sequential interactive page

Queries, one obvious Service Provider optimization is the ability to determine the

10,000 objects once, but then “keep them around” so they can be used to satisfy

subsequent Paged Query Requests from that Consumer with very little additional

overhead. The ability to keep the set of objects around for reuse is especially important

where they satisfy one or more Query Constraints set either in a previous Where Clause

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 70 of 97

or Named XQuery Paged Request (see subsequent sections), so that the object selection

does not have to be re-executed with the arrival of each new Paged Query. In order for

this strategy to be efficiently implemented:

 Each Paged Query Request after the first one must include a Provider-supplied

“identifier” to allow it to be linked with the existing set of retrieved objects, without

recreating the complete list of objects to be returned. This identifier is the

navigatorId HTTP header field described below. For Paged Interactive Queries, this

responsibility is placed upon the issuing Consumer. For Paged Batch Queries in a

Brokered Architecture, this is the responsibility of the Environments Provider,

which must take the original Consumer Query and issue a series of Paged Queries

to the Service Provider.

 The Service Provider should not save the Consumer-specific state in the first place,

unless it has reason to believe that the Consumer will continue to request new

object pages using the returned navigatorId. The Consumer should inform the

Service Provider that its state should be saved, by including the queryIntention

HTTP header field in each Paged Query except the last. Whenever that field is

present, a “time to live” indicator associated with the Consumer State should be

reset. When it is not, the Service Provider can immediately remove the Consumer-

related state associated with the navigationId.

The second advantage of connecting a Paged Query Request up with previously saved

state for that Consumer is that a consistent view of the objects maintained by that

Provider might be obtained. For example, if the XQuery script or XPath expression were

re-executed with each Request, and a “lower numbered” object was added or deleted

between any two Paged Query Requests, the entire object index would be skewed and

the same object would either be reported on two successive Responses, or not

reported at all.

Use of the navigatonId allows the Service Provider to generate a consistent array of

objects in response to the initial Paged Query, and supply all subsequent Paged

Requests issued by that Consumer from there. The Consumer can determine if Objects

are being added or deleted during the time it is requesting Pages, because these

changes will be reported in Events issued by the Service Provider.

The complete set of Paged Query / Response specific HTTP header fields or URL Query

parameter are provided in the table below.

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 71 of 97

Name Where

Found

Description Value or

Format

queryIntention Requests If the Consumer intends to follow up with further

Paged Queries after this one, this field must be

included in the Paged Query Request.

It is a “hint” to the Service Provider that maintaining

Consumer state (and supplying a navigationId)

would be advantageous.

 ALL

 ONE-OFF

 NO-

CACHING

navigationId Response

and then

Requests

Optionally returned by a Service Provider within a

Query Response. If it is, the Consumer must

include it on all subsequent Paged Query Requests it

issues which have the same Query constraints

(service and (where present) query qualifiers).

It is used to allow the Service Provider to reuse the

Query results for an individual Consumer even in

cases where multiple Consumers are changing the

underlying data between Paged Query invocations.

Opaque

Token

navigationPageSize Request

or URL

Query

Parameter

and then

Response

This is included in every Request, and indicates the

number of Objects to be returned in the

corresponding Response Page. If its value is zero,

the Response will contain no objects, but such usage

may be valuable if the Consumer wishes to ascertain

from the returned navigationCount:

 The total number of objects which can be paged

through, before beginning Object retrievals

 The aggregate number of objects which met the

constraints contained in the associated query

qualifiers

If the Page Size specified is too large for the Service

or Environments Provider to supply, an Error with

code 413 (Response too large) will be returned.

When contained in the Response, it indicates the

actual number of objects on the returned Page. This

Integer

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 72 of 97

will be equal to the Page Size value in the Request

unless this is the last page of results, in which case

its value will be the number of remaining objects.

navigationPage Request

or URL

Query

Parameter

and then

Response

The number of the Page to be returned. If it is

outside the range of results (which does not

constitute an error) an HTTP Response with a code

of 204 (No Content) will be returned.

Such a No Content Response is particularly

important in those cases when the Provider does

not support the itemCount field, as it allows the

Consumer to determine when it has completely

paged through the entire set of stored results.

Note: As inferred by the algorithms in the

navigationLastPage entry below, the first

navigationPage is one (not zero).

Integer

navigationCount Responses The total number of objects in the set of results

generated by the initial Paged Query that is

associated with the returned navigationId.

If omitted, the Service Provider is indicating that it

cannot, or chooses not to calculate the total number

of qualifying objects in advance. This might be the

case for a Service Provider front-ending a

distributed database, where performing this

calculation would be an expensive operation.

Integer

navigationLastPage Responses This HTTP field only appears in Responses

containing Item Count where the Page Size is non-

zero. It may be directly derived from the following

formula:

 (Item Count / Page Size) where there is no

remainder

 ((Item Count / Page Size) + 1) in all other cases

It is included as an aid for the Consumer in detecting

when to stop issuing Paged Query Requests.

Like with navigationCount, if determining the count

Integer

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 73 of 97

is too expensive, this header may be omitted.

5.5. Service Paths

Although the SIF Infrastructure is independent of the Data Model defining the payloads it

carries, Service Paths are provided to optimize data retrieval for those Data Models which

utilize “Associative” objects. Assume the following three objects: Student, Section and

StudentSectionAssociation, the last of which might contain the RefId of a Student, the RefId of

a Section and the information related to that Student’s association with that Section (such as

the student’s attendance records and final grade for that section).

A common Consumer use case might be to retrieve all students for a given section who’s RefId

is known. This might be done by:

 Querying the StudentSectionAssociations collection for all associations with the given

section RefId (1 query)

 Examining each returned Association object to obtain its corresponding Student RefId.

 Querying the Students collection for the Student object corresponding to each RefId (1

query per student in section)

In the case where there were 40 students in that section, this would require a total of 41

Queries. In a similar manner, obtaining all the Students in a School might require hundreds of

individual Query requests. With Service Paths, the Consumer issues only a single Query in

either case.

5.5.1. Service Paths in Query URLs

When used, the Service Path replaces the Service Object Name in the URL of a Query

Request, and the Consumer never accesses the intermediate associative object. In the

example above, the Service Path in the Query URL would look like:

../sections/1234/students

The Query Response would contain the collection of Student objects corresponding to

the set of students enrolled in the section whose RefId was 1234. This single Query

then provides the same Student data that would otherwise have required 41 queries to

obtain. The exact same approach could be used to satisfy other common use cases.

For example:

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 74 of 97

../students/5678/sections returns all the Section objects in which Student 5678 is

enrolled

../schools/9012/students returns all the Student objects attending School 9012

../schools/9012/sections returns all the Section objects offered at School 9012

The following restrictions apply to Service Paths:

 They may only be used in Query Requests. A Service Path cannot be used to

create, update or delete data.

 They do not post Events and cannot be subscribed to. In the above example,

when an existing Student is added to a Section, the only Event published will be a

Create Event, issued by the StudentSectionAssociations Object Provider.

 They may “nest”. The following URL is legal and may be defined in a particular

Data Model binding to the SIF 3 infrastructure:

../schools/9012/sections/1234/students, If successful, a query with this Service Path

would return all Students for Section 1234 located in school 9012.

In all other respects, they are the equivalent of Service Names. This means a Service

Path URL may be qualified by Context and Zone, and be combined with Paged Query

HTTP Header fields and where clause URL Query parameters. What explicitly

distinguishes a Service Path Query is that:

 The URL segments may include one or more UUIDs, none of which is the last

segment

 The value of the “serviceType” HTTP Header Field is set to “SERVICEPATH”

5.5.2. Service Paths in the Provider Registry

If a Service Provider Registry is present, every supported Service Path within a given

Environment must have an entry in that registry. This takes the form of

owningObjectName/{}/returnedObjectName

The “{}” is a placeholder for the RefId of the owning object that will be indicated in the

actual Query URL as issued by the Consumer. To support the examples above would

require the following Service Path entries in the Provider Registry:

sections/{}/students

students/{}/sections

schools/{}/students

schools/{}/sections

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 75 of 97

Any authorized Service Provider may provide a Service Path, although in general it will

usually be the provider of the Association object.

5.6. XQuery

This and the following section describe ways to “qualify” the objects returned in the Response

to any Query Request in terms of satisfying conditions present in the Query URL.

The responses to Object-level Query Requests include all the elements from all (or the next

page) of the objects supported by the Service Provider located at the URL to which the Query

Request is dispatched.

This section discusses how to use XQuery-based technology to impose constraints on the

object data returned in a Query Response, by:

 Defining the “where” criteria which every returned object has to meet (ex: “Student must

be a senior”)

 Defining the “selection” of exactly which object elements within each qualifying object are

to be returned (ex: “only return Student name and address”)

Rather than imposing a SIF-specific syntax for specifying these constraints (as was done in SIF

2.x with the Query and Extended Query elements) SIF 3 has a light normative dependency on

the XQuery 1.0 standard,30 and uses that industry standard technology for this purpose.

5.6.1. Terminology

There are several related terms, which need to be defined at the outset.

Term Meaning

XQuery A query and functional programming language that is designed to query and

transform collections of structured and unstructured data, usually in the form of XML.

30 Please see http://www.w3.org/TR/xquery/ for the XQuery 1.0 specification.

http://www.w3.org/TR/xquery/

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 76 of 97

XQuery

Script

A script written in the XQuery “language”, that when executed will apply the XQuery

constructs and logic to (among other things) manipulate, transform and normalize an

indicated collection of data.

Named

XQuery

A registered XQuery script that is designed to incorporate externally set template

parameter values in its execution.

XQuery

Request

A (possibly Paged) SIF 3 Query Request that contains: the identification of a predefined

(static) Named XQuery entry in the XQuery Template Registry Utility Service. This is

optionally accompanied by the Named XQuery parameter values, included as

additional Query parameters in the URL path.

5.6.2. Static XQuery Templates

What distinguishes a “static” XQuery Request is the presence of the following two fields:

Name Where Description Value or Format

serviceType HTTP

Header Field

of Query

Request

Indicates the type of Service being

requested

XQUERYTEMPLATE

xqueryToken URL

Segment

The XQuery entry ID that identifies a

Named XQuery stored in the Named

XQuery Registry.

The query involked by this Named

XQuery and the corresponding URL

Query parameter values must: conform

to the XQuery script limitations required

of all entries in the Named XQuery

Registry

xs:token

The value must be unique

within the integration, and

usually corresponds to the

name of a predefined XQuery

in the Data Model binding or

a Profile.

Ex: StudentSnapshot

A Query Request containing such a Named XQuery token can be dispatched to any

Object Service Provider that either:

a. Supports the retrieval, interpretation and execution of XQuery scripts (typically

by leveraging the functionality of an XQuery interpretive package).

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 77 of 97

b. Has been pre-prepared to accept this specific token value, roll in the supplied

template parameters and process and return the resultant data. This bypasses

the requirement for the Provider Service to have a general XQuery processing

capability.31

The format restrictions placed upon any Named XQuery that may be interpreted by SIF

3 Object Services Providers are defined in the documentation of the Named XQuery

Registry Utility Service, and they may be further restricted by site-specific data security

policies.

Issuing a Query Request based upon a static Named XQuery is done by including the

name (its ID in the Named XQuery Registry) as a URL segment in the Request, optionally

(depending on the script) accompanying it with parameter values used when the script

is retrieved and executed at the Service Provider.32

Example:

 Here is the URL to execute the “StudentsBySection” XQuery Template which will return

just the students in the specified section, where the ID of that Section is provided in a

URL Query parameter:

../ StudentsBySectionId?sectionId=acb66d4b-0140-1000-0006-14109fdcaf83

Note that the equivalent result could have been obtained in this case by (if

supported in the Environment) issuing the following Service Path Query:

../ sections/acb66d4b-0140-1000-0006-14109fdcaf83/students

Consumer Process Flow

It is possible for the Consumer to read the contents of the Named XQuery Registry to

confirm that the query it wants to use has already been constructed, checked for

possible security violations and placed in the Registry by the site administrators under

an agreed upon recognized name, which is the assigned value of its xqueryToken.

31 In addition to defining Composite Object types, a Data Model can also satisfy the need to optimize the processing of

commonly used object qualifiers (ex: return AllStudentsInSection) by explicitly documenting the XQuery Templates that

apply those qualifiers as part of the release. This allows the developers of Service Provider software to more readily

support XQuery Templates.

32 For a detailed explanation of the XQuery Template Registry Utility Service which support and expand these Template

Identifiers, please refer to the Utility Services document.

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 78 of 97

However in those cases where a specific Named XQuery is particularly useful, its name

and content may be standardized in the Data Model release, so that Consumer

applications can be constructed which rely on it being there in every Environment into

which they are deployed (making the read of the XQuery Template Registry

unnecessary).

In any case, the Consumer is assumed to understand what a selected Named XQuery

does, and how to specify the set of associated URL query parameters that convert it

into the XQuery script which when executed by the selected Service Provider, will return

(in one Response or a series of Response Pages) the desired set of objects with the

desired set of elements.

Service Provider Process Flow

Any Service Provider which has registered to support static Named XQuerys must

perform the following sequence of operations when it receives a Query Request

containing an xqueryToken.

Step Process Flow Control

1 The Service Provider receives the Query

Request and detects that there is a supplied

xqueryToken

If the Service Provider does not have the

Named XQuery pre-stored or implemented,

and if it does not support interpreting and

processing unknown Named XQuerys, reject

the Consumer Query with a code of 404 (not

found), completing the processing for this

Query.

If the Service Provider already has the Named

XQuery corresponding to that Token value, go

to step 3.

2 The Service Provider issues a Query by ID to

the Named XQuery Registry Utility Service,

giving the supplied Token value as the ID.

If an Error is returned, reject the Consumer

Query with a code of 404 (not found).

Processing for this request is complete.

3 The Named XQuery is known to the Service

Provider and can be processed. Execute it as

an XQuery Script by supplying the values of

the appropriate URL parameters contained in

If parameter matching fails, or if the script

itself exits with an error, reject the Consumer

Query with a code of 400 (Bad Request).

Processing for this request is complete.

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 79 of 97

the URL of the Query Request.

4 The XQuery script or other implementation

has successfully executed and an “array” of

results (indices to objects, to partial objects,

or of the data objects themselves) has

resulted.

Save the XQuery Template contents for

potential reuse.

5 The processing is over. What happens from

this point is determined from the other

aspects of the Query Request (Paged or not

Paged, Immediate or Delayed).

Before being sent in a Response to the

original Query, the collection of objects

returned by the XQuery script must be

“wrapped” in the corresponding “plural”

element (ex: wrap individual “student” objects

in the “students” element).

In general, most of the elements defined in

the XML schema for an XQuery Response are

optional.

5.7. Dynamic Query

While static Named XQuerys are extremely powerful, and can potentially involve multiple

object types, cross Zone boundaries, calculate new element aggregates and make content-

based decisions they are “static” because:

 Site security policies may require pre-inspection of all XQuery Scripts to ensure data

privacy, as it may not be obvious from what is being returned, whether sensitive data

has been compromised (since among other things, a script can return a potentially

restricted value under a new element name).

 Many Service Providers may not have a generic XQuery interpreter accessible, and as a

result, may not be able to process an arriving Named XQuery unless its content was

known in advance so that its support could be “hard coded” either when the Service

was first installed at the site or perhaps even before the product shipped.

As a result, a need was seen for a relatively “simple” way for a Consumer to dynamically

include some limited qualifiers on any given Query which it could reasonably expect would be

interpreted successfully by all Service Providers.

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 80 of 97

This functionality is achieved by attaching an additional “where” Query Parameter onto the

URL specifying the intended Service Provider to which the Query is to be delivered. The value

of this parameter qualifies which of the objects controlled by the Service Provider should be

returned. It cannot be used if the Service type is an XQuery Token.

A Dynamic Query designed to isolate and return all students who took the introductory

course in Computer Science, might contain (depending on the Data Model) the following

where clause:

?where=[(studentssections/section=”CIS 101”)]

In a more complex example, the URL Query arguments to the Student Service instructing it to

return all students named “John Smith” would be:

../students?where=[(name/nameOfRecord/familyName="Smith")and(name/nameOfRecord/givenNa
me="John")]

Note: Every condition in the Where Clause is assumed to start just past the root of the object

being queried. The above example as a pure XPath would have to (but doesn’t) start with:

 students/student

All Dynamic Query Where Clause values must conform to the simplified standardized XPATH

format restricted for data security reasons, the format of which is specified below.33

Component Examples Comments

Where Clause34 where=[Condition and Condition and

Condition …]

or

where=[Condition or Condition or

Condition …]

Multiple conditions linked

together by either one or more

“and” or one or more “or”

Boolean operators. Each

condition may be optionally

enclosed in “()”.

Condition Element Operator Value Object element and possible

33 This expression format matches that of a singular form XQuery expression (see Utility Services Document section on

the XQuery Template Registry) but mandates neither namespace definitions nor absolute element paths.

34 For purposes of clarity, in this, as in all examples, the required URL encoding of the contents of the “where” clause is

assumed rather than explicitly shown.

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 81 of 97

name/nameOfRecord/familyName="Smith" value, bounded by an operator.

Element name/nameOfRecord/familyName XPath to the element (or

attribute) being evaluated,

relative to the root of the object

(ex: students/student)

Operator =

!=

<

>

<=

>=

The “=” and “!=” equality

operators must be supported

for all elements that support

being dynamically queried.

Whether support for the other

operators is required or optional

depends upon the Data Model

binding to the SIF 3

Infrastructure.

Value “Smith”

“true”

17

All non-numeric values must be

surrounded with double quotes

As a final example, the equivalent to the “Query by ID” URL which returns the data for Student

1234:

../students/1234

is the dynamic query:

../students/?where=[@id=1234]

5.8. Result Set Order

There are many use cases where the ability to specify the order of a result set is a

requirement. For example: a user wants to list all students of a school, ordered by last

name. If the results could all be returned at once (on a single page), the consumer could

easily order the students before being displayed to the end user. However, it is likely that

there would be multiple pages of students. In this situation, it is necessary for the ordering to

be performed by the provider of students.

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 82 of 97

A consumer may specify an “order” clause to any Object Query, Dynamic Query, or Service

Path by adding a query parameter of the following form:

?order=[primarysortfield=direction;secondarysortfield=direction...]

For example, to order students by last name ascending, the query would be:

../students?order=[name/nameOfRecord/familyName=ascending]

To order students with “last name ascending” as the primary sort order and “first name

descending” as the secondary sort order, you would execute:

../students?order=[name/nameOfRecord/familyName=ascending;name/nameOfRecord

/givenName=descending]

All “order” sort fields must conform to the simplified standardized XPATH format defined in

the previous section.

5.9. Query By Example (QBE)

Another very useful mechanism for a consumer to query data is based on the concept of

“Query by Example” (QBE). The concept is based on providing the “Query Executor”, the

provider, an example or template of the data to be returned. For example if we want all

female students with the legal family name of “Jones” to be returned we would send the

following payload to the object provider (we use the SIF AU 1.3 data model in the example):

<StudentPersonal>

 <PersonInfo>

 <Name Type="LGL">

 <FamilyName>Jones</FamilyName>

 </Name>

 <Demographics>

 <Sex>2</Sex>

 </Demographics>

 <PersonInfo>

</StudentPersonal>

The result of a QBE must always be a collection of the same object type as the “example.” In

the above example a collection of StudentPersonal objects where the three conditions match.

QBE is an alternative to the dynamic query. The Dynamic Query is based on xPath notation to

provide the “where-clause” of the query. QBE in contrast provides a partial Data Model Object

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 83 of 97

where the elements that are provided are being used in the “where-clause” on the object

provider.

5.9.1. REST Call

Because QBE requires a payload (the query template) the QBE REST call is conveyed as

a HTTP POST. The HTTP GET cannot be used since payloads are not supported for HTTP

GET.35 To distinguish between a Create Request which is also conveyed as a HTTP

POST, a HTTP header called ‘methodOverride’ with the value ‘GET’ must be provided

for QBE functionality. If such a HTTP header is not present or has the value of ‘POST’

then the REST call must be interpreted by the provider as a standard Create Request.

The REST call does support all other features of a standard GET (query), ServicePath

and/or Dynamic query. Specifically it supports paging, query intentions in immediate

and delayed mode. All standard response HTTP status codes as with a GET (query),

ServicePath and/or Dynamic query are supported, specifically if a provider cannot

support a QBE then the standard HTTP status code of 400 (Bad Request) must be

returned by the provider.

Example of QBE Request:

POST /.../StudentPersonals

methodOverride: GET

...

<StudentPersonal>

 <PersonInfo>

 <Name Type="LGL">

 <FamilyName>Jones</FamilyName>

 </Name>

 <Demographics>

 <Sex>2</Sex>

 </Demographics>

 <PersonInfo>

</StudentPersonal>

5.9.2. QBE Payload & Query Functionality

The QBE HTTP POST call will require a payload. The payload is a single standard Data

Model Object (i.e. not a collection of objects). The object provided is the query template

meaning that all the elements that are provided as part of the object are to be used in

35 http://stackoverflow.com/questions/978061/http-get-with-request-body

http://stackoverflow.com/questions/978061/http-get-with-request-body

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 84 of 97

the query condition. Each element in the payload forms a specific query condition. The

conjunction between the conditions is ‘AND’. There is no ‘or’ or any other conjunction

between conditions supported. This is the nature of the QBE concept. The comparison

operator for each condition is a ‘LIKE’ as known in SQL syntax. The only supported

wildcard in the value of an element is the ‘%’ which stands for any number of

characters. The following assumptions and constraints apply to the LIKE comparator in

QBE:

 A ‘LIKE’ shall be interpreted as an EQUAL if the Data Model Object element type is

anything other than a string style type (i.e. dates, numbers etc.).

 For string type elements the ‘LIKE’ with wildcard has the following meaning:

o ‘ABC’: No wildcards in the value is equivalent to an ‘EQUAL’.

o ‘%ABC’: Wildcard at the start of the value means ‘ENDS IN’. In this case

anything that ENDS IN ‘ABC’.

o ‘ABC%’: Wildcard at the end of the value means ‘STARTS WITH’. In this case

anything that STARTS WITH ‘ABC’.

o ‘%ABC%’: Wildcard at the start and end of the value means ‘CONTAINS’. In this

case anything that CONTAINS ‘ABC’.

o ‘AB%C’: Wildcard anywhere in the value means ‘STARTS WITH’ and ‘ENDS IN’. In

this case anything that STARTS WITH ‘AB’ followed by any number of

characters and ENDS IN ‘C’.

o Etc.

 Case Sensitivity: No case sensitivity is implied or mandated. It is up to the

implementation of the provider if case sensitivity is required/applied or not.

Examples:

All the examples below are Student QBEs and show only a partial payload:

Example 1: Get all students with family name of ‘Jones’
<FamilyName>Jones</FamilyName>

Example 2: Get all students where the family name starts with ‘J’
<FamilyName>J%</FamilyName>

Example 3: Get all students where the family name contains ‘one’
<FamilyName>%one%</FamilyName>

Example 4: Get all students where the family name contains ‘one’ and the first name is

‘Mike’
<StudentPersonal>

 <PersonInfo>

 <Name>

 <FirstName>Mike</FirstName>

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 85 of 97

 <FamilyName>%one%</FamilyName>

 </Name>

 <PersonInfo>

</StudentPersonal>

5.9.3. Provider Registry & ACLs

QBEs are considered as standard OBJECT queries and therefore no other service type in

the provider registry is required. If the ACL for a particular object service lists the

‘QUERY’ right as ‘APPROVED’ then a consumer can issue queries using QBE. The

provider may not support them at all or not all combinations. In such a case the

provider must return a HTTP status of 400 (Bad Request).

5.10. “Changes Since” Functionality

Events are already supported since the initial release of SIF 3. SIF Events are most commonly

supported in Brokered environments but unlikely to be available in DIRECT environments. To

enable a consumer to request changes since a “given point” in a DIRECT environment the

“Changes Since” functionality is being added to SIF 3.2. The "given point" can be any opaque

marker that indicates a point since the last changes have been requested. That opaque

marker can be a timestamp, a version number, an offset etc. It is entirely up to the provider to

determine what this opaque marker is. The important thing is that it is the provider who will

return changed data (payload) and the next valid opaque marker (HTTP Header) to the

consumer in the response to a "changes since" request.

IMPORTANT: "Changes Since" functionality is only applicable for OBJECT services. In other

words changes since is not supported for any other service type such as SERVICEPATH,

FUNCTION, UTILITY etc.

5.10.1. REST Call (Consumer)

For a consumer to retrieve changes since a given point it simply issues the following

request to the request connector of the standard Object provider (example for

xStudents):

 GET .../xStudents?changesSinceMarker=<opaque_marker_for_students>

Note the “changesSinceMarker” URL query parameter. It must be noted that

there will be a different opaque marker for each object type. The consumer is expected

to track them individually.

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 86 of 97

“Changes Since” requires this additional URL query parameter to indicate that the

consumer requests a “Change Since” rather than a standard query. The actual REST call

is conveyed as a HTTP GET and supports all other standard HTTP headers. Paging is

allowed but sorting and filtering (“where” clauses as for dynamic queries) is not

allowed and must be ignored by the provider if given by the consumer.

“changesSinceMarker” Management

The changesSinceMarker is given to the consumer in two ways one being the HTTP

HEAD method the other being the response to the changes since request. Both of

these are detailed below.

HTTP HEAD

The first method to retrieve the “changesSinceMarker” is through the HTTP HEAD

method to the Object Provider. If the Object Provider supports the “ChangesSince”

functionality for the given object then it is expected to return the

“changesSinceMarker” as a HTTP Header in the response. If the provider does not

return that HTTP header then the consumer must assume that “Changes Since”

functionality is not supported for the given Object Type/Service. It is expected that

the consumer calls this method when it first joins the SIF environment and before

it performs and initial sync of all data.

Response to “Changes Since” request

Once a consumer has retrieved the “changesSinceMarker” through the HTTP HEAD

call, has performed a full sync, it is assumed that the consumer will, at regular

intervals, request “changes since” with the REST call listed earlier in this document.

As part of the response to such a call the provider must return the new

“changesSinceMarker” to the consumer as a HTTP Header field in the following two

cases:

 If the consumer has not provided any paging info, indicating that the

response holds all changes for the given object type, then the provider must

return the new “changesSinceMarker” as a HTTP Header field. The consumer

will use that new value in the next “Changes Since” call.

 The consumer has provided paging info. In this case the provider must

return the new “changesSinceMarker” as a HTTP Header field in the

response of the first page. The consumer is expected to store that new

value. It will still request the remaining pages with the original

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 87 of 97

“changesSinceMarker”, though. Once all changes have been received it will

use the new “changesSinceMarker” in the next “Changes Since” call.

Note: In the case of ‘paging’ it is expected that the provider will also return

the navigationId HTTP Header since it is highly likely that the consumer will

come back and ask for more pages until there are no more. The consumer

would provide that navigationId in each request as a HTTP Header or URL

Query parameter.

5.10.2. Payload Interpretation

The response payload to a "changes since" request is always a collection of the same

objects (i.e. xStudent). The payload can be empty if there are no more changed data

(HTTP Status 204 - No Content). Because objects have no element that indicates the

change type there is a need to interpret the payload as listed below to determine the

actual change type:

 If the refId/uuid of a particular object in the response payload does not exist in

the consumer's data store it must be assumed to be NEW (i.e. created).

 If the refId/uuid of a particular object in the response payload does exist in the

consumer's data store it must be assumed to be UPDATED (i.e. changed). It is

important to note that the full object is returned not a partial object because

there is no way to indicate if the update is partial or full.

 If a particular object in the response payload contains the refId/uuid only the

consumer must assume that object to be DELETED.

5.10.3. Provider Registry & ACLs

“Changes Since” is considered as standard OBJECT queries and therefore no other

service type in the provider registry is required. If the ACL for a particular object service

lists the ‘QUERY’ right as ‘APPROVED’ then a consumer can issue “Changes Since”

requests. If a provider of an object type service does not support the "Changes Since"

functionality then it must return the standard HTTP status code 400 (Bad Request). The

"Changes Since" functionality is optional and not mandatory for a provider. Note

that a consumer can “query” the Object provider with the HTTP HEAD call to determine

if an Object provider supports the “Changes Since” functionality before issuing “Changes

Since” requests (see also 5.15).

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 88 of 97

5.11. Change Requests and Events Overview

One of the most important scalability features of this release is the ability to package changes

to multiple objects within a single change Request and / or change Event. This functionality is

especially significant during end of reporting periods when for example many thousands of

small attendance record updates may need to be reported, because it allows the publisher to

reduce the number of actual Events it issues by two orders of magnitude.

The following information applies to Create, Update and Delete Requests. It will be assumed

that the issuing Consumer has supplied an authorization value that has been successfully

authenticated by the Environments Provider, and it had been previously authorized to issue

the Request to the indicated Service Provider. The distinction between immediate and delayed

change Requests only determines when and where the results will be delivered, and is

covered in more detail in the description of the Queue Service in the Infrastructure Services

document.

5.11.1. Multi-object Requests and Responses

Single object change requests conform completely to the standard REST design

patterns, and always result in an immediate Response that also conforms to the

standard REST design pattern (reporting success or failure with the appropriate HTTP

code).

However when a multi-object formatted Request is issued (even if it contains only a

single object) the multi-object form of the SIF Response message must be returned.

Here each individual object in the Request will have its corresponding change status

reported, although its position within the multi-object Response message may not be its

position within the request (i.e. ordering is not guaranteed). As is the case with the

single object Response, there is no object data (other than the RefId) contained within

any multi-object change Response.

All delayed multi-object Responses must also contain the additional relativeServicePath

HTTP header field, which replicates all information contained in the last segment of the

Request URL, including the Service name defining the payload format, and any

accompanying URL matrix parameters (which could include Context, Zone and XQuery

Token). Any URL Query parameters are not included.36

36 This allows a “stateless” Consumer to reconstruct an outstanding delayed Request from the arriving Response.

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 89 of 97

In a Brokered Architecture the Environments Provider inserts the value of this field, if

the Response is delayed. Its presence is transparent to the Service Provider actually

generating the Response (which doesn’t know whether the Response it is providing will

be delivered back to the Consumer immediately or delayed).

Example:

The value of the relativeServicePath HTTP header field in a typical delayed Response

might be:

students;contextId=archived;zoneId=WilsonSchool

5.11.2. Multi-object Events

All Events are multi-object, even if generated by a single object change Request. All

object data changes resulting from any change request must be published within one

multi-object change Event generated from that Request, although here again, the object

ordering within that Event may be different than it was in the original Request37.

In the case of create and update Requests, success for an individual object operation

implies that the values of all mandatory elements and every specified optional element

that is supported by the Service Provider will be set to the values contained in the

Request. Even if one or more unsupported optional elements do not have their values

changed, the Request will be considered successful.

5.11.3. Partial Failures

These can occur in a “multi-object” change Request (ex: Create, Update or Delete) for

which the Service Provider is processing each object change in turn. For example one or

more or all of the object ID values in a Delete request might not match the ID of any

existing object of that type.

The top level of the Response sent back by the Service Provider in this case will still

indicate “success”. The individual “status” assigned to each of the proposed changes in

the Response will indicate whether or not the change is now reflected in the data

associated with that specific Object. Failure of a multi-object request, like failure of a

37
 The removal of the requirement to maintain the Request ordering of objects in the generated Response and Event

allows Service Provider implementations to crack open a multi-object Request, assign a different thread to each object

change, and dynamically build the Response and Event messages from the individual threads as they complete

processing an object-specific change.

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 90 of 97

single object request, occurs only when a global error (ex: authorization violation,

inability to unmarshal the payload) is detected.

5.11.4. Message Payloads and Data Objects

In general, all “infrastructure elements” such as Zone, Context, Message ID and Message

Type are specified as either URL Query or Matrix Parameters or as HTTP Header fields.

As a result, for most forms of change Requests and Events, the HTTP payloads can be

umarshaled directly into programming language objects since there are no “outer

wrappers” defined over the object contents, which, to maintain infrastructure

independence from the data model, would of necessity have to be of type xs:any.

This greatly simplifies the requirements placed on standard XML to object converters.

5.12. Create

The Create Request is different than the other Change Requests because at the time it is

issued, the id attribute, which is assigned by the Service Provider, is not yet known. The

Consumer must provide a “suggested” or advisory value but the Service Provider is not

required to accept that suggestion unless the mustUseAdvisory field is set in the HTTP Header

of the Create Request. In that specific case, if the Service Provider cannot accept the

suggested object ID, it must reject the entire Consumer Request (if for a single object Create)

or the sub-request (if for a multiple object Create) with HTTP status 404 (not found). 38

The Consumer’s suggested ID will be returned in the “advisoryId” element of each sub-result in

the Create Response (whether successful or not) so that the consumer can match the result to

the original sub-request. This is required because the ordering of sub-results in a Response

message need not match the ordering in the Request which generated that Response.

The format expected for the object id returned by an application service provider is a token

(although a given Data Model can define its unique object identifiers however it choses,

including UUID format). The formats for the object id in the various Utility Services are defined

in the Utility Services document.

38
 The Consumer in this case is requesting that the object be created. The actual “creator” of the object is the Service

Provider, and that is the component that assigns the globally unique object identifier (and issues the corresponding

change Event and services subsequent queries, updates and deletes on the object when the identifier the Provider

assigned to it is specified in the request).

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 91 of 97

Message Type Single Object Payload (on success) Multi-Object Payload (on success)

Create Request A “Student” object element, containing

at a minimum, all mandatory elements,

with an empty or “suggested” value for

the “id” XML attribute.

A “Students” element, which consists

of multiple “Student” object elements

of the form described for the single

object Request.

Create Response An HTTP Response with a status of 201

(object created). The payload consists

solely of the new Student object.

An HTTP Response with a status of

200 and a payload consisting of a

single “createResponse” element. This

includes, for each requested object

successfully created, an internal

status of 201 and the service-assigned

refId.

Any requested object that failed to be

created is indicated by an error

statusCode and a corresponding error

payload

Such a sample createResponse payload

is shown below.

Create Event N/A.

Events are always reported with multi-

object payloads, even if they contain

only one object

A “Students” element containing the

collection of all successfully created

Student objects, each of which

contains all the elements of the

Student as known to the Provider

(including the “id”)

Example: Create Request

The following XML instance fragment illustrates the payload of a multi-object Student

Create Request sent to the Service Provider URL ending in students. The ID “suggestions”

are not globally unique, and will almost certainly be replaced by the Service Provider.

<students>

 <student id=”1”>

 … student data …

 </student>

 <student id=”2”>

 … student data …

 </student>

 <student id=”3”>

 … student data …

 </student>

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 92 of 97

</students>

Example: Create Response

The Response to a “create” Request of 3 objects, where the middle object was a

duplicate of an existing one.

<createResponse>

 <creates>

 <create id="df789e1c-dfe7-4c18-8ef0-d907b81ea61e" advisoryId="3"

statusCode="201"/>

 <create advisoryId="1" statusCode="409">

 <error id="6f789e1c-dfe7-4c18-8ef0-d907b81ea61e">

 <code>409</code>

 <scope>StateConflict</scope>

 <message>Student already exists!</message>

 </error>

 </create>

 <create id="ff789e1c-dfe7-4c18-8ef0-d907b81ea61e" advisoryId="2"

statusCode="201"/>

 </creates>

</createResponse>

Note that the error is embedded in the second create, and the results do not

correspond directly to the order of the objects in the original Request. Inclusion of the

suggested object ID value in the advisoryId element allows the Consumer to correlate

the error to the actual sub-request which failed.

The two successful create operations are reported back with their corresponding

assigned id attributes.

5.13. Update

It is unnecessary for the Consumer issuing an update Request to have recently (or ever) issued

a Query Request on the object being updated. This allows updating of a single element in an

object by a Consumer who is aware of only that element. An example would be a Library

System that is updating the Library Card number assigned to a Student.

As a result, the update Request is required to contain only those elements to which new values

are being assigned, implying the payload of such a Request might contain objects missing one

or more mandatory object elements. The Consumer is not constrained however and may

send back additional information, up to and including the entire object.

In the corresponding update Event, the Service Provider is required to send back only the

elements that actually changed. There are implementations that find this difficult to do

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 93 of 97

however, and (whatever elements were actually modified) find it easier to send back the entire

resulting object in the update Event.

This can be indicated through the following HTTP Header Field in the Update Event.

HTTP Header

Element
Char Description Value

replacement O The Object data contained in an Update Event may

reflect either:

 Only the actual elements updated as a result of an

Update Request (along with the object id)

 The latest value of all object elements (in other words

it completely duplicates the object “after” changes

have been applied, rather than just including only the

elements which were actually changed). 39

One of:

“FULL”,

“PARTIAL”

where “PARTIAL”

is default and

will be assumed

if this field is not

present

The actual payloads in update messages are described below.

Message Type Single Object Payload (on

success)

Multi-Object Payload (on success)

Update Request A “Student” object element

containing at least all elements that

are being changed, plus the “id”

identifying which Student the

changes apply to. As noted, other

elements may be included, up to the

complete contents of the Student

Object after the changes.

A “Students element, which consists of

multiple, “Student” object elements,

each subject to the restrictions of the

Student element in the single object

payload.

Update Response An HTTP Response with a status of

204 (no content).

There is no Payload.

An HTTP Response with a status of 200

(success) and a location corresponding

to the URL of the first successfully

modified object.

39 Note that depending on the Data Model, some Data Object Services may be required to always send full object

representations within every Update Event. From the infrastructure point of view, this is optional behavior and cannot

be verified.

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 94 of 97

It contains a payload consisting of a

single “updateResponse” element of the

form shown below.

Update Event N/A.

Events are always reported with

multi-object payloads, even if they

contain only one object

A “Students” element containing the

collection of all successfully modified

Student objects.

The actual contents of each Student

object is determined by the replacement

HTTP field defined above.

Example:

The Response to an “update” Request of 3 objects, where the middle object did not previously

exist.

<updateResponse>

 <updates>

 <update id="df789e1c-dfe7-4c18-8ef0-d907b81ea61e" statusCode="200"/>

 <update id="41953aaa-2811-11e6-b67b-9e71128cae77" statusCode="404">

 <error id="6f789e1c-dfe7-4c18-8ef0-d907b81ea61e">

 <code>404</code>

 <scope>Not Found</scope>

 <message>Student does not exist!</message>

 </error>

 </update>

 <update id="ff789e1c-dfe7-4c18-8ef0-d907b81ea61e" statusCode="200"/>

 </updates>

</updateResponse>

Note that the error is embedded in the second update, and the results correspond directly to

the order of the objects in the original Request. This allows the Consumer to correlate the

error to the actual subrequest which failed.

The two successful update operations are reported back with their identifying id attributes.

5.14. Delete

Message Type Single Object Payload (on

success)

Multi-Object Payload (on success)

Delete Request There is no payload.

 The URL to which the Delete

A “deleteRequest” element, which

consists of multiple, “delete” object ids.

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 95 of 97

Request is issued indicates which

object is being deleted (i.e. the “id”

identifying the Student is the last

segment of the Request’s URL, in

conformance with standard REST

conventions).

Since REST conventions do not support

payloads on HTTP DELETE messages, all

multi-object Delete Requests are

conveyed via an HTTP PUT message

containing an additional HTTP Header

Field value of methodOverride set to

DELETE.

Delete Response An HTTP Response with a status of

204 (no content).

There is no Payload.

An HTTP Response with a status of 200

(success).

It contains a payload consisting of a

single “deleteResponse” element of the

form shown below.

Delete Event N/A.

Events are always reported with

multi-object payloads, even if they

contain only one object

A “Students” element containing the

collection of all successfully deleted

Student objects.

The actual contents representing each

Student being deleted consists solely of

the id element of the deleted Student.

Request Example Multi-Object Delete:

<deleteRequest xmlns="http://www.sifassociation.org/infrastructure/3.2">

 <deletes>

 <delete id="df789e1c-dfe7-4c18-8ef0-d907b81ea61e"/>

 <delete id="abc89e1c-34e7-4cde-908a-d9abc81ea09a"/>

 <delete id="ff789e1c-dfe7-4c18-8ef0-d907b81ea61e"/>

 </deletes>

</deleteRequest>

Response Example Multi-Object Delete:

<deleteResponse xmlns="http://www.sifassociation.org/infrastructure/3.1">

 <deletes>

 <delete id="df789e1c-dfe7-4c18-8ef0-d907b81ea61e" statusCode="200"/>

 <delete id="abc89e1c-34e7-4cde-908a-d9abc81ea09a" statusCode="404">

 <error id="6f789e1c-dfe7-4c18-8ef0-d907b81ea61e">

 <code>404</code>

 <scope>Not Found</scope>

 <message>Student does not exist!</message>

 </error>

 </delete>

 <delete id="ff789e1c-dfe7-4c18-8ef0-d907b81ea61e" statusCode="200"/>

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 96 of 97

 </deletes>

</deleteResponse>

5.15. Head

Head is an abbreviation for headers taken fro the HTTP method HEAD. HEAD is identical to the

GET method except it only returns the headers that would be present for the same request

and not the body. This can be more efficient and therefore useful in many situations. In

order to realize these efficiencies, retrieving just the headers is supported on the Request

Connector.

Example Uses of Head:

 Initialize “Changes Since” for the first time.

 Serve as a service level ping to check availability.

 Ascertain the number of pages a query will (likely) result in.

 Check if data has changed or if your copy is current.

For each supported GET call a provider should support the corresponding HEAD operation. If

the provider is unable to support the HEAD method for a particular service an error of 405

(Method Not Allowed) must be returned. The consumer should then fallback to the

corresponding GET operation. At this point the consumer may need to be built such

that it ignores the body of in this request’s return.

It is important to keep in mind that while a properly used HEAD is more efficient than a

GET, that efficiency is most likely only realized on the wire. In most cases it will require

nearly as many server resources to service a HEAD request as it would to handle an

otherwise identical GET request. As always be judicious in your use of requests.

5.16. Functional Services

A Functional (or Job Object) Service encapsulates stateful process behavior as well as the data

exchanged between applications implementing that process.

It does this by supporting all four methods of a Data Object Service Provider interface, but

applying them to Object Services rather than Object data elements.

When a Consumer issues a “Create” to a Functional Service, it results in the creation of a new

executing instance of the Function (a “Job”) rather than a new Data Object.

SIF Infrastructure Specification 3.2: Base Architecture Version 3.2, June 2016

Copyright © Access 4 Learning Page 97 of 97

From a conceptual point of view, each Job instance contains a set of named “phases”, identical

to every other Job created by that Function Service. These discrete phases define and

encapsulate the sub-actions that need to be done, but they do not explicitly determine the

ordering (since the phases defining a Function may be executed in different order, depending

upon the implementation and the needs of the site where the Functional Service is deployed).

Once created, the Job instance can be queried to find out where in the process it is (what is

happening, what is the current status of each completed phase) and the Job may issue Events

as its internal phases are completed.

Each Job Phase is represented by:

 A Phase name

 A status (NotStarted, InProgress, Completed, Failed)

 A defined Object Service corresponding to that Phase (which supports some or all of the

set of service operations)

The creator of the Job can therefore:

 Monitor the status of the Job (through querying the Job instance or by receiving Job

level Events)

 Interact with the Job at any phase by issuing Query, Create, Modify and Delete requests

(the meaning of which are determined by the Functional Service itself).

 Receive Events from the various Phases of the Job

Examples of such Functional Services might include StudentLocator and EndOfYearRollover.40

40 Further details of Functional Service functionality will be made public after the input from a SIF 3.0 Proof of Concept

project is received

