10/27/2005

These are the proposed changes to Vertical Reporting Objects in SIF version 1.5r for the 2.0 specification.

Updated 02/03/2006:

Eric Petersen added a number of sections to this document on February 3, 2006. These are all prefixed with “(2/3/06-EP)”. These additions reflect discussions with Mark Ward regarding ambiguous match resolution and Query by Example; requests from the E-Transcript Task Force in support of Student Record Exchange’s use of Student Locator and consistent use of transactional choreographies; and last-minute changes that are needed by some vendors for canceling Student Locator transactions from district or state systems.

###

5.10.4 StudentLocator – Error Status

StudentLocator/@[IdStatus]: Add "Error" as a value.

(2/3/06-EP): Add StudentLocator/SIF_Error as a conditional element. When IdStatus is set to “Error”, the SIF_Error element provides details about the error. Rather than the SIF Specification defining a list of possible error categories and codes for student locator transactions, the SIF_Category and SIF_Code elements may contain values defined by the application that is responding to the StudentLocator request. It is recommended the requestor convey these values in log files or error reports, along with the SIF_Desc and optional SIF_ExtendedDesc elements.

5.10.4 StudentLocator – Effective Date Element

StudentLocator/EffectiveDate: Split this into two separate elements, StartDate and EndDate. Adjust the definition accordingly.

5.10.4 StudentLocator – Additional Elements for E-Transcript

(2/3/06-EP): At the request of the E-Transcript task force, the following elements should be added to StudentLocator to support the Student Locator transaction that may precede a Student Record Exchange. These new elements are intended to facilitate the lookup of students that may not be currently enrolled in a school or district; they may or many not apply to Student Locator transactions outside E-Transcript use cases. Further, the values of these new elements may often be approximations on the part of the entity requesting a Student Record Exchange and not precise values.

	Element
	Attribute
	Char
	Description

	DateGraduated
	
	O
	Indicates the year, year/month, or date the student graduated. When a year is specified, expressed as the four-digit year in which the school year ends (e.g. “2004” for the 2003-04 school year). The requestor may also specify a year and month in YYYYMM format, or a full date in YYYYMMDD format.

	SchoolAttendedName
	
	O
	The name of the school last attended by the student.

	SchoolAttendedLocation
	
	O
	The location of the school last attended by the student (e.g. city or county name, district name, etc.)

	OtherId
	
	O
	Additional student identifiers not represented elsewhere in StudentLocator (e.g. the Driver’s License number of the student.)

5.10.4 StudentLocator – Add SIF_Metadata/TimeElement

(2/3/06-EP): SIF_Metadata/TimeElement may be specified as metadata of a StudentLocator SIF_Request to indicate a time duration the request parameters apply to. (SIF_Metadata/TimeElement is being used in place of adding new elements to the StudentLocator object.) This metadata may be supplied by E-Transcript systems that know a student existed in a district during a certain time period. If the responder is able to make use of the metadata it may do so to narrow down the student lookup; otherwise the metadata can be ignored or logged.

5.10.4 StudentLocator – TransactionId Attribute

(2/3/06-EP): StudentLocator/@TransactionId: Add a TransactionId (GUID) to allow requestors and responders to refer to the same logical Student Locator “transaction” over more than one SIF_Request/SIF_Response exchange.

NOTE: This same pattern is being applied to E-Transcript message choreographies. A Student Locator transaction and a Student Records Exchange transaction will therefore employ consistent messaging.

In SIF 1.5r1, the SIF_Request/SIF_MsgId can serve as an informal transaction identifier to mate SIF_Response messages with the SIF_Request that initiated the student lookup. It has been observed in vendor implementations that a Student Locator “transaction” may persist over time at both the requestor and responder system. For example, district staff may wish to view Student Locator requests that have been issued to date, that are pending, require attention, etc. State administrative staff may also wish to view these same transactions for the district(s) currently performing Student Locator lookups. The two software systems involved need to refer to these transactions by a common identifier. SIF_MsgId cannot always be used for this purpose because a Student Locator transaction may span more than one exchange of SIF_Request/SIF_Response messages to advance the IdStatus to a completion state.

Two scenarios are common. First, a StudentLocator request may result in an ambiguous match that is met with a SIF_Response where IdStatus equals “Ambiguous”. A process may then take place outside of SIF (e.g. through a web application) to resolve the ambiguous match. Once resolved, the responder may issue a second SIF_Response with an IdStatus equal to “Valid”. The transaction then ends. In this example, it is possible for the requestor and responder to informally identify the same transaction through the SIF_Response/SIF_RequestMsgId element. However, there are other choreographies that might require the sender to issue subsequent SIF_Requests, each with a new SIF_MsgId but that refer to the same Student Locator “transaction”.

An example of this is the case of an error. A StudentLocator request may be met with an initial SIF_Response where IdStatus equals “Error” – for instance, insufficient student information was presented to perform a match. The responding system may then wish to put the transaction on hold pending more information from the requestor, which must come in the form of a second SIF_Request message. (NOTE: There are significant usability issues with simply issuing a new transaction at this point, particularly for states that are faced with hundreds of thousands or millions of batched Student Locator transactions at the beginning of the school year.) District staff might then take action to correct the problem and the district issue a second SIF_Request with complete student parameters.

In SIF 1.5 it is not possible to tie this second SIF_Request to the original one; the introduction of the new TransactionId attribute will allow vendors to implement solutions where requestor and responder can communicate back and forth until a single logical transaction reaches completion.

5.10.4 StudentLocator – Cancellation of Transactions

Pending Review:

(2/3/06-EP): Add “Cancel” and “Cancelled” as IdStatus values.

A district can cancel a Student Locator transaction in progress as follows: The requestor issues a SIF_Request where IdStatus is set to “Cancel” and @TransactionId is set to the ID of a previous transaction. This instructs the responder to cancel that transaction in progress. If successful, the responder replies with a SIF_Response where IdStatus is set to “Cancelled”. If the TransactionId is invalid, the cancel operation was not successful, or an exception occurred, the responder replies with a SIF_Response where IdStatus is set to “Error” and the SIF_Error element describes the error. Both sides consider the transaction cancelled.

A state can inform a district that it has cancelled a Student Locator transaction as follows: The responder (state) replies to a prior SIF_Request with a SIF_Response where IdStatus is “Cancelled”. This informs the requestor (district) that the transaction has been cancelled for whatever reason (usually at the direction of state administrative staff through some application user interface). The transaction ends.

Because the “Cancel” and “Cancelled” values model application behavior and may not be implemented by all systems that are otherwise capable of supporting StudentLocator objects, they are optional. If the requestor (district) receives a “Cancelled” reply it must be ignored without taking further action. If the responder (state) receives a “Cancel” request it may reply with a SIF_Response where the SIF_Response/SIF_Error element is set to indicate an error. The SIF_Category should be set to 8 (“Request and Response”) and SIF_Code set to 9 (“Unsupported query in request”). NOTE: In this case the SIF_Response/SIF_Error element is used per normal SIF request/response protocol; not to be confused with the StudentLocator/SIF_Error element, which is to be used when a student lookup results in a processing error.

5.10.4 StudentLocator – Clarification for Ambiguous Match Resolution

(2/3/06-EP): Expand the documentation to clearly state that a responder may issue more than one SIF_Response to a Student Locator request. More specifically: a requestor, upon issuing a SIF_Request for StudentLocator, should anticipate one or more SIF_Responses until the transaction reaches a termination point (i.e. IdStatus=”Valid”, IdStatus=”Error”, IdStatus=”New”, or IdStatus=”Cancel”). Once the IdStatus is in a termination state, the requestor is no longer responsible for processing SIF_Response messages tied to the original request.

See the previous section regarding @TransactionId for an example of when this clarification is needed for ambiguous match resolution.

5.10.4 StudentLocator - New Section describing Query by Example

This requires an Infrastructure change to SIF_Query.

SIF_Query should now allow StudentLocator to be a child of SIF_Query in place of SIF_ConditionGroup. Requestors may then use the Query by Example method of issuing a lookup. When a responder receives a SIF_Request where the SIF_Query element contains a StudentLocator object, it uses all elements and attributes specified in that object as if it had received them through SIF_Query conditions. For example,

<SIF_Query>

<SIF_QueryObject ObjectName=”StudentLocator”/>

<StudentLocator IdStatus=”Request” TransactionId=”guid”>

<LocalId>10284</LocalId>

<Name>

<LastName>Smith</LastName>

<FirstName>Franklin</FirstName>

<MiddleName>K</MiddleName>

</Name>

</StudentLocator>

</SIF_Query>

NOTE: This change is also applicable to an E-Transcript StudentRecordExchange request, and in the future to any request type intended to supply parameters to a transaction. However, it is not intended to offer a general Query by Example functionality to data requestors. In other words, we are not proposing that you be able to request objects like StudentPersonal and BusInfo using Query by Example at this time.

5.10.1 ReportManifest

These are proposed changes to the ReportDefinitionSource and ReportFormat elements in the ReportManifest object.

	Element
	Attribute
	Char
	Description

	ReportDefinitionSource
	
	M
	Indicates where the report definition can be found. It may be If Type=”Embedded” or “Base64Binary”, this element’s value contains the report definition. If Type=”URL”, this element’s value is the URL pointing to the external source for the definition. Type=”SIF_Query” indicates that the SIF_QueryGroup element contains the definition.

	
	Type
	R
	This attribute indicates the source of the report definition.

Values
URL, Embedded, Base64Binary, SIF_Query

	
	QueryLanguage
	R
	The vendor-defined query language used in the report definition (e.g. “SQL”, “ExampleObject”, “com.vendor.format”, etc.) If the Type attribute is “SIF_Query” then QueryLanguage should also be “SIF_Query”.

	ReportFormatList
	
	O
	An optional list of one or more third-party formats that describe the visual representation of the report data. If more than one report format is associated with a manifest, the implementation can choose the most applicable format by examining the ContentType attribute.

	ReportFormatList/ReportFormat
	
	MR
	

	
	Type
	R
	This attribute indicates the encoding of the format reference.

Values
URL, Description, Base64Binary

	
	ContentType
	R
	The vendor-defined content type (e.g. “com.vendor.format”, “PDF”, etc.)

Proposed Changes to ReportDefinitionSource:

Added ReportDefinitionSource/QueryLanguage to enable data collector agents to programmatically support more than one kind of report definition language. Common uses would be proprietary query languages, other industry-standards like SQL, custom formats (e.g. for a specific state implementation), and so on.

Added “Base64Binary” to ReportDefinitionSource/Type for consistency with ReportFormat (where it was already supported) and other areas of SIF that allow for Base64 binary data to be encapsulated by an object.

Renamed ReportDefinitionSource/Type value “Description” to “Embedded” for clarity.

Removed “ExampleObject” from ReportDefinitionSource/Type. A data collector agent that supported query-by-example would use the QueryLanguage attribute to indicate the definition format is an example object.

Updated the description of ReportDefinitionSource

Proposed Changes to ReportFormat

Moved this element into ReportFormatList per SIF 2.0 repeating element guidelines. We should also consider removing the repeatability of this element altogether, although it would be more difficult to add it later on because of the need for a container.

5.10.4.6 Example ReportManifest Object – SQL

(2/3/06-EP): Update this section of the specification to reflect the new ReportDefinitionSource/@QueryLanguage attribute is used to specify SQL is the query language being used in the manifest.

Also consider using another example of SQL that does not involve StudentLocator since that particular object has its own message choreography outside of Vertical Reporting. It is confusing to see StudentLocator implemented as a SIF_ReportObject and contrary to all other documentation on the subject. One suggestion would be to simply change “SELECT StudentID FROM StudentLocator” to “SELECT LocalId,LastName,FirstName,MiddleName FROM StudentPersonal”.

5.10.4.8 Example ReportManifest Object – Query by Example

(2/3/06-EP): Same comment as above: while it is valuable to show Query by Example used in a report manifest, consider illustrating it with another example that does not involve StudentLocator. StudentLocator Query by Example is now taken care of by allowing any top-level data object as a child of SIF_Query.

